1
|
Zhao Y, Luo L, Huang L, Zhang Y, Tong M, Pan H, Shangguan J, Yao Q, Xu S, Xu H. In situ hydrogel capturing nitric oxide microbubbles accelerates the healing of diabetic foot. J Control Release 2022; 350:93-106. [PMID: 35973472 DOI: 10.1016/j.jconrel.2022.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/18/2022] [Accepted: 08/10/2022] [Indexed: 01/15/2023]
Abstract
Diabetic foot ulcer (DFU) is a devastating complication in diabetes patients, imposing a high risk of amputation and economic burden on patients. Sustained inflammation and angiogenesis hindrance are thought to be two key drivers of the pathogenesis of such ulcers. Nitric oxide (NO) has been proven to accelerate the healing of acute or chronic wounds by modulating inflammation and angiogenesis. However, the use of gas-based therapeutics is difficult for skin wounds. Herein, therapeutic NO gas was first prepared as stable microbubbles, followed by incorporation into a cold Poloxamer-407 (P407) solution. Exposed to the DFU wound, the cold P407 solution would rapidly be transformed into a semisolid hydrogel under body temperature and accordingly capture NO microbubbles. The NO microbubble-captured hydrogel (PNO) was expected to accelerate wound healing in diabetic feet. The NO microbubbles had an average diameter of 0.8 ± 0.4 μm, and most of which were captured by the in situ P407 hydrogel. Moreover, the NO microbubbles were evenly distributed inside the hydrogel and kept for a longer time. In addition, the gelling temperature of 30% (w/v) P407 polymer (21 °C) was adjusted to 31 °C for the PNO gel, which was near the temperature of the skin surface. Rheologic studies showed that the PNO gel had mechanical strength comparable with that of the P407 hydrogel. The cold PNO solution was conveniently sprayed or smeared on the wound of DFU and rapidly gelled. In vivo studies showed that PNO remarkably accelerated wound healing in rats with DFU. Moreover, the sustained inflammation at the DFU wound was largely reversed by PNO, as reflected by the decreased levels of proinflammatory cytokines (IL-1β, IL-6 and TNF-α) and the increased levels of anti-inflammatory cytokines (IL-10, IL-22 and IL-13). Meanwhile, angiogenesis was significantly promoted by PNO, resulting in rich blood perfusion at the DFU wounds. The therapeutic mechanism of PNO was highly associated with polarizing macrophages and maintaining the homeostasis of the extracellular matrix. Collectively, PNO gel may be a promising vehicle of therapeutic NO gas for DFU treatment.
Collapse
Affiliation(s)
- Yingzheng Zhao
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China; CiXi Biomedical Research Institute of Wenzhou Medical University, China.
| | - Lanzi Luo
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China; CiXi Biomedical Research Institute of Wenzhou Medical University, China
| | - Lantian Huang
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China; CiXi Biomedical Research Institute of Wenzhou Medical University, China
| | - Yingying Zhang
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China; CiXi Biomedical Research Institute of Wenzhou Medical University, China
| | - Mengqi Tong
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China; CiXi Biomedical Research Institute of Wenzhou Medical University, China
| | - Hanxiao Pan
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China; CiXi Biomedical Research Institute of Wenzhou Medical University, China
| | - Jianxun Shangguan
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China; CiXi Biomedical Research Institute of Wenzhou Medical University, China
| | - Qing Yao
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China; CiXi Biomedical Research Institute of Wenzhou Medical University, China
| | - Shihao Xu
- Department of Ultrasonography, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325000, China.
| | - Helin Xu
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China; CiXi Biomedical Research Institute of Wenzhou Medical University, China.
| |
Collapse
|
2
|
Pelegrino MT, Pieretti JC, Nakazato G, Gonçalves MC, Moreira JC, Seabra AB. Chitosan chemically modified to deliver nitric oxide with high antibacterial activity. Nitric Oxide 2020; 106:24-34. [PMID: 33098968 DOI: 10.1016/j.niox.2020.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/10/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
The aim of the current study is to report a simple and efficient method to chemically modify chitosan in order to form S-nitroso-chitosan for antibacterial applications. Firstly, commercial chitosan (CS) was modified to form thiolated chitosan (TCS) based on an easy and environmental-friendly method. TCS was featured based on physicochemical and morphological techniques. Results have confirmed that thiol groups in TCS formed after CS's primary amino groups were replaced with secondary amino groups. Free thiol groups in TCS were nitrosated to form S-nitrosothiol moieties covalently bond to the polymer backbone (S-nitroso-CS). Kinetic measurements have shown that S-nitroso-CS was capable of generating NO in a sustained manner at levels suitable for biomedical applications. The antibacterial activities of CS, TCS and S-nitroso-CS were evaluated based on the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and time-kill curves determined for Escherichia coli, Staphylococcus aureus and Streptococcus mutans. MIC/MBC values reached 25/25, 0.7/0.7 and 3.1/3.1 μg mL-1 for CS/TCS and 3.1/3.1, 0.1/0.2, 0.1/0.2 μg mL-1 for S-nitroso-CS, respectively. Decreased MIC and MBC values have indicated that S-nitroso-CS has higher antibacterial activity than CS and TCS. Time-kill curves have shown that the bacterial cell viability decreased 5-fold for E. coli and 2-fold for S. mutans in comparison to their respective controls, after 0.5 h of incubation with S-nitroso-CS. Together, CS backbone chemically modified with S-nitroso moieties have yielded a polymer capable of generating therapeutic NO concentrations with strong antibacterial effect.
Collapse
Affiliation(s)
- Milena T Pelegrino
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André, Brazil
| | - Joana C Pieretti
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André, Brazil
| | - Gerson Nakazato
- Department of Microbiology, Biology Sciences Center, Londrina State University (UEL), Londrina, Brazil
| | - Marcelly Chue Gonçalves
- Department of Microbiology, Biology Sciences Center, Londrina State University (UEL), Londrina, Brazil
| | - José Carlos Moreira
- Center for Engineering, Modeling and Applied Social Sciences, Universidade Federal do ABC, Santo André, Brazil
| | - Amedea B Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André, Brazil.
| |
Collapse
|
3
|
Ahmadian N, Mehrnejad F, Amininasab M. Molecular Insight into the Interaction between Camptothecin and Acyclic Cucurbit[4]urils as Efficient Nanocontainers in Comparison with Cucurbit[7]uril: Molecular Docking and Molecular Dynamics Simulation. J Chem Inf Model 2020; 60:1791-1803. [PMID: 31944098 DOI: 10.1021/acs.jcim.9b01087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cucurbit[n]urils (CB[n], n = 5, 6, 7, 8, 10, 14) and their derivatives due to the hydrophobic cavities and polar carbonyl portals have been considerably explored for their potential uses as drug delivery systems. It is important to understand how these macrocyclic compounds interact with guests. Camptothecin (CPT), as a natural alkaloid, is a topoisomerase inhibitor with antitumor activity against breast, pancreas, and lung cancers. The application of this drug in cancer therapy is restricted due to its low aqueous solubility and high toxicity. Recently, the complex formation between the cucurbit[7]uril (CB[7])/acyclic cucurbit[4]uril (aCB[4]) nanocontainers and CPT have been evaluated to overcome the potential drawbacks of the related drug. Herein, using computational methods, we identified the interaction mechanism of CPT with CB[7]/aCB[4]s, which consist of benzene and naphthalene sidewalls (aCB[4]benzene and aCB[4]naphthalene, respectively) since the experimental approaches have not completely provided information at the molecular level. Our molecular docking and molecular dynamics (MD) simulations show that CB[7] and its two acyclic derivatives form stable inclusion complexes with CPT especially through hydrophobic interactions. We also found that aCB[4]s with the aromatic sidewalls can attach to CPT through π-π interactions. This investigation highlights aCB[4]s due to the structural properties and flexible nature as better nanocontainers for controlled release delivery of pharmaceutical agents in comparison with the CB[7] nanocontainer.
Collapse
Affiliation(s)
- Nasim Ahmadian
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box: 14395-1561, Tehran, Iran
| | - Faramarz Mehrnejad
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box: 14395-1561, Tehran, Iran
| | - Mehriar Amininasab
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, P.O. Box: 14155-6455, Tehran, Iran
| |
Collapse
|
4
|
Alimoradi H, Barzegar-Fallah A, Sammut IA, Greish K, Giles GI. Encapsulation of tDodSNO generates a photoactivated nitric oxide releasing nanoparticle for localized control of vasodilation and vascular hyperpermeability. Free Radic Biol Med 2019; 130:297-305. [PMID: 30367997 DOI: 10.1016/j.freeradbiomed.2018.10.433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/07/2018] [Accepted: 10/18/2018] [Indexed: 11/25/2022]
Abstract
We report the synthesis and characterization of a photoactive nitric oxide (NO) releasing nanoparticle (NP) by encapsulation of the NO donor tert-dodecane S-nitrosothiol (tDodSNO) into a co-polymer of styrene and maleic anhydride (SMA) to afford SMA-tDodSNO. Encapsulation did not affect tDodSNO's stability or NO release profile, but imparted water solubility and protection from degradation reactions with glutathione. Under photoactivation the NP acted as a potent NO donor, with photoactivation acting as a switch to induce localized vasodilation in aortic rings (EC50* 660 nM at 2700 W/m2) and cause vascular hyperpermeability in mesenteric beds (8-fold increase in dye uptake at 1 µM SMA-tDodSNO with 460 W/m2 photoactivation). The NP was markedly superior as a photoactive NO donor in comparison to the S-nitrosothiols GSNO and SNAP, which are commonly used in experimental studies, as well as sodium nitroprusside, a clinically used vasodilator. Future development of this NP may find wide ranging therapeutic applications for treating cardiovascular disease and other disorders related to NO signaling, as well as enhancing macromolecular drug delivery to target organs through selective hyperpermeability. Supporting information describing the biophysical characterization of SMA-tDodSNO is supplied in an accompanying Data in Brief article (Alimoradi et al., doi: 10.1016/j.dib.2018.10.149).
Collapse
Affiliation(s)
- Houman Alimoradi
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Anita Barzegar-Fallah
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Ivan A Sammut
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Khaled Greish
- College of Medicine and Medical Sciences, Department of Molecular Medicine, Nanomedicine Unit, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| | - Gregory I Giles
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|