1
|
Liang B, Cai X, Xu S, Huang J, Deng H, Ren W, Chen J, Lo TWB, Chen X, Zhu Z. NaOAc-Promoted [3+1+2] Annulation of O-Pivaloyl Oximes, Aldehydes, and 2-Methylbenzothiazole Salts: Synthesis of 1-Azaphenothiazines. J Org Chem 2024; 89:13438-13449. [PMID: 39233546 DOI: 10.1021/acs.joc.4c01590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
This paper presents an efficient strategy for constructing 1-azaphenothiazines through the NaOAc-promoted [3+1+2] annulation of O-pivaloyl oximes, aldehydes, and 2-methylbenzothiazole salts. The reaction is conducted in ethanol and employs oxygen as the oxidant under catalyst-free conditions. The process is amenable to various O-pivaloyl oximes, 2-methylbenzothiazole salts, and aldehydes, affording the target products in satisfactory yields.
Collapse
Affiliation(s)
- Baihui Liang
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Xiangya Cai
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Shengting Xu
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Jie Huang
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Haiyin Deng
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Weijie Ren
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Jiehao Chen
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Tsz Woon Benedict Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Xiuwen Chen
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Zhongzhi Zhu
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
2
|
Han X, Zhang N, Li Q, Zhang Y, Das S. The efficient synthesis of three-membered rings via photo- and electrochemical strategies. Chem Sci 2024:d4sc02512a. [PMID: 39156935 PMCID: PMC11325197 DOI: 10.1039/d4sc02512a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024] Open
Abstract
Three-membered rings, such as epoxides, aziridines, oxaziridines, cyclopropenes, vinyloxaziridines, and azirines, are recognized as crucial pharmacophores and building blocks in organic chemistry and drug discovery. Despite the significant advances in the synthesis of these rings through photo/electrochemical methods over the past decade, there has currently been no focused discussion and updated overviews on this topic. Therefore, we presented this review article on the efficient synthesis of three-membered rings using photo- and electrochemical strategies, covering the literature since 2015. In this study, a conceptual overview and detailed discussions were provided to illustrate the advancement of this field. Moreover, a brief discussion outlines the current challenges and opportunities in synthesizing the three-membered rings using these strategies.
Collapse
Affiliation(s)
- Xinyu Han
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
| | - Na Zhang
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine Shanghai China
| | - Qiannan Li
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
| | - Yu Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 People's Republic of China
| | - Shoubhik Das
- Department of Chemistry, University of Bayreuth Bayreuth 95447 Germany
| |
Collapse
|
3
|
Jiang HM, Zhao YL, Sun Q, Ouyang XH, Li JH. Recent Advances in N-O Bond Cleavage of Oximes and Hydroxylamines to Construct N-Heterocycle. Molecules 2023; 28:molecules28041775. [PMID: 36838760 PMCID: PMC9964420 DOI: 10.3390/molecules28041775] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Oximes and hydroxylamines are a very important class of skeletons that not only widely exist in natural products and drug molecules, but also a class of synthon, which have been widely used in industrial production. Due to weak N-O σ bonds of oximes and hydroxylamines, they can be easily transformed into other functional groups by N-O bond cleavage. Therefore, the synthesis of N-heterocycle by using oximes and hydroxylamines as nitrogen sources has attracted wide attention. Recent advances for the synthesis of N-heterocycle through transition-metal-catalyzed and radical-mediated cyclization classified by the type of nitrogen sources and rings are summarized. In this paper, the recent advances in the N-O bond cleavage of oximes and hydroxylamines are reviewed. We hope that this review provides a new perspective on this field, and also provides a reference to develop environmentally friendly and sustainable methods.
Collapse
Affiliation(s)
- Hui-Min Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yi-Lin Zhao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- Correspondence: (X.-H.O.); (J.-H.L.)
| | - Jin-Heng Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Correspondence: (X.-H.O.); (J.-H.L.)
| |
Collapse
|
4
|
Parmar D, Dhiman AK, Kumar R, Sharma AK, Sharma U. Cp*Co(III)-Catalyzed Selective C8-Olefination and Oxyarylation of Quinoline N-Oxides with Terminal Alkynes. J Org Chem 2022; 87:9069-9087. [PMID: 35758768 DOI: 10.1021/acs.joc.2c00752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Herein we report Cp*Co(III)-catalyzed site-selective (C8)-H olefination and oxyarylation of quinoline N-oxides with terminal alkynes. The selectivity for C8-olefination and oxyarylation is sterically and electronically controlled. In the case of quinoline N-oxides (unsubstituted at the C2 position), only the olefination product was obtained irrespective of the nature of the alkynes. In contrast, oxyarylation was observed exclusively when 2-substituted quinoline N-oxides were reacted with 9-ethynylphenanthrene. However, alkynes with electron-withdrawing groups provided only olefination products with 2-substituted quinoline N-oxides. The developed strategy allowed a facile functionalization of quinoline N-oxides bearing natural molecules and an estrone-derived terminal alkyne to deliver the corresponding olefinated and oxyarylated products. To understand the reaction mechanism, control experiments, deuterium-labeling experiments, and kinetic isotope effect (KIE) studies were performed.
Collapse
Affiliation(s)
- Diksha Parmar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ankit Kumar Dhiman
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rohit Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Akhilesh K Sharma
- International Research Center for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Upendra Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
De A, Majee A. Synthesis of various functionalized
2
H
‐azirines: An
updated library. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Aramita De
- Department of Chemistry Visva‐Bharati (A Central University) Santiniketan India
| | - Adinath Majee
- Department of Chemistry Visva‐Bharati (A Central University) Santiniketan India
| |
Collapse
|
6
|
Bisht GS, Dunchu TD, Gnanaprakasam B. Synthesis of Quaternary Spirooxindole 2H-Azirines under Batch and Continuous Flow Condition and Metal Assisted Umpolung Reactivity for the Ring-Opening Reaction. Chem Asian J 2021; 16:656-665. [PMID: 33464707 DOI: 10.1002/asia.202001418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/19/2021] [Indexed: 11/06/2022]
Abstract
An efficient and new approach for the synthesis of spirooxindole 2H-azirines via intramolecular oxidative cyclization of 3-(amino(phenyl)methylene)-indolin-2-one derivatives in the presence of I2 and Cs2 CO3 under batch/continuous flow is described. This method is mild and facile to synthesize a variety of spirooxindole 2H-azirines derivatives in gram-scale. Furthermore, we have synthesized spiroaziridine derivatives from spirooxindole 2H-azirines derivatives via addition of Grignard reagent. In addition, we discloses an metal assisted attack of Grignard nucleophile at N-centre rather than C- of the spirooxindole 2H-azirines, which concurrently underwent ring opening of transient aziridines to afford N-substituted Z-3-(aminophenyl)indolin-2-one. A plausible mechanism for azirination and ring-opening reaction is also presented.
Collapse
Affiliation(s)
- Girish Singh Bisht
- Department of Chemistry, Indian Institute of Science Education and Research, 411008, Pune, India
| | - Tenzin Dolkar Dunchu
- Department of Chemistry, Indian Institute of Science Education and Research, 411008, Pune, India
| | - Boopathy Gnanaprakasam
- Department of Chemistry, Indian Institute of Science Education and Research, 411008, Pune, India
| |
Collapse
|
7
|
Zhao MN, Ning GW, Yang DS, Fan MJ, Zhang S, Gao P, Zhao LF. Iron-Catalyzed Cycloaddition of Amides and 2,3-Diaryl-2 H-azirines To Access Oxazoles via C-N Bond Cleavage. J Org Chem 2021; 86:2957-2964. [PMID: 33443426 DOI: 10.1021/acs.joc.0c02843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A novel and efficient iron-catalyzed cycloaddition reaction using readily available 2,3-diaryl-2H-azirines and primary amides is reported. A wide range of trisubstituted oxazoles could be achieved in good yields with good functional group compatibility. In this transformation, two C-N bonds were cleaed and new C-N and C-O bonds were formed.
Collapse
Affiliation(s)
- Mi-Na Zhao
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Gui-Wan Ning
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - De-Suo Yang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Ming-Jin Fan
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Sheng Zhang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Peng Gao
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Li-Fang Zhao
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| |
Collapse
|
8
|
Lin S, Liang Y, Cheng J, Pan F, Wang Y. Novel diaryl-2H-azirines: Antitumor hybrids for dual-targeting tubulin and DNA. Eur J Med Chem 2021; 214:113256. [PMID: 33581556 DOI: 10.1016/j.ejmech.2021.113256] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 01/30/2023]
Abstract
Multiple-target drugs may achieve better therapeutic effect via different pathways than single-target ones, especially for complex diseases. Tubulin and DNA are well-characterized molecular targets for anti-cancer drug development. A novel class of diaryl substituted 2H-azirines were designed based on combination of pharmacophores from Combretastatin A-4 (CA-4) and aziridine-type alkylating agents, which are known tubulin polymerization inhibitor and DNA damaging agents, respectively. The antitumor activities of these compounds were evaluated in vitro and 6h showed the most potent activities against four cancer cell lines with IC50 values ranging from 0.16 to 1.40 μM. Further mechanistic studies revealed that 6h worked as a bifunctional agent targeting both tubulin and DNA. In the nude mice xenograft model, 6h significantly inhibited the tumor growth with low toxicity, demonstrating the promising potential for further developing novel cancer therapy with a unique mechanism.
Collapse
Affiliation(s)
- Shibo Lin
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yuru Liang
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jiayi Cheng
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Feng Pan
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yang Wang
- School of Pharmacy, Fudan University, Shanghai, 201203, China; Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
9
|
Babaoglu E, Hilt G. Electrochemical Iodine-Mediated Oxidation of Enamino-Esters to 2H-Azirine-2-Carboxylates Supported by Design of Experiments. Chemistry 2020; 26:8879-8884. [PMID: 32220135 PMCID: PMC7497194 DOI: 10.1002/chem.202001465] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 11/23/2022]
Abstract
An electrochemical iodine-mediated transformation of enamino-esters for the synthesis of 2H-azirine-2-carboxylates is presented. In addition, a thermic conversion of azirines to 4-carboxy-oxazoles in quantitative yield without purification was described. Both classes 2H-azirines-2-carboxylates and the 4-carboxy-oxazoles are substructures in natural products and therefore are of considerable interest for synthetic and pharmaceutical chemists. The optimization was not performed in a conventional manner with a one-factor-at-a-time process but with a Design of Experiments (DoE) approach. Beside a broad substrate scope the reaction was also employed to a robustness screen, a sensitivity assessment, and complemented with mechanistic considerations from cyclic voltammetry experiments.
Collapse
Affiliation(s)
- Emre Babaoglu
- Institut für ChemieCarl von Ossietzky Universität OldenburgCarl-von-Ossietzky Strasse 9–1126129OldenburgGermany
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Strasse 435043MarburgGermany
| | - Gerhard Hilt
- Institut für ChemieCarl von Ossietzky Universität OldenburgCarl-von-Ossietzky Strasse 9–1126129OldenburgGermany
| |
Collapse
|
10
|
Angyal A, Demjén A, Wölfling J, Puskás LG, Kanizsai I. Acid-Catalyzed 1,3-Dipolar Cycloaddition of 2 H-Azirines with Nitrones: An Unexpected Access to 1,2,4,5-Tetrasubstituted Imidazoles. J Org Chem 2020; 85:3587-3595. [PMID: 32020808 DOI: 10.1021/acs.joc.9b03288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The first 1,3-dipolar cycloaddition of 2H-azirines with nitrones, a straightforward approach toward the regioselective synthesis of 1,2,4,5-tetrasubstituted imidazoles, is reported. This trifluoroacetic acid-catalyzed protocol tolerates a broad range of aliphatic and aromatic substrates, offering an efficient access to highly diverse, multisubstituted imidazoles in isolated yields up to 83% under mild conditions.
Collapse
Affiliation(s)
- Anikó Angyal
- AVIDIN Ltd., Alsó kikötő sor 11/D, Szeged H-6726, Hungary.,Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - András Demjén
- AVIDIN Ltd., Alsó kikötő sor 11/D, Szeged H-6726, Hungary
| | - János Wölfling
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | | | - Iván Kanizsai
- AVIDIN Ltd., Alsó kikötő sor 11/D, Szeged H-6726, Hungary
| |
Collapse
|
11
|
Panday A, Ali D, Choudhury LH. Cs 2CO 3-Mediated Rapid Room-Temperature Synthesis of 3-Amino-2-aroyl Benzofurans and Their Copper-Catalyzed N-Arylation Reactions. ACS OMEGA 2020; 5:3646-3660. [PMID: 32118180 PMCID: PMC7045548 DOI: 10.1021/acsomega.9b04169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/21/2020] [Indexed: 05/04/2023]
Abstract
Cs2CO3 in dimethylformamide (DMF) is a perfect combination for the rapid room-temperature synthesis of 3-amino-2-aroyl benzofuran derivatives from the reaction of 2-hydroxybenzonitriles and 2-bromoacetophenones in good to excellent yields. Using this one-pot C-C and C-O bond-forming strategy, we prepared a series of 3-amino-2-aroyl benzofuran derivatives within a very short time (10-20 min). This method was also found suitable for gram-scale synthesis. Benzofurans (3) obtained by this Cs2CO3-mediated methodology were then further explored for the development of a tunable base- and ligand-free copper-catalyzed N-arylation methodology using arylboronic acids for the easy access of either mono- or bi-N-aryl derivatives of aminobenzofurans at ambient temperature. The reaction of 3 with malononitrile in DMF medium under microwave heating conditions provided highly fluorescent conjugated alkenes and novel pyridine-fused benzofurans.
Collapse
|
12
|
Ramkumar N, Voskressensky LG, Sharma UK, Van der Eycken EV. Recent approaches to the synthesis of 2H-azirines. Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02539-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Khlebnikov AF, Novikov MS, Rostovskii NV. Advances in 2H-azirine chemistry: A seven-year update. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.03.040] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Wang M, Hou J, Yu W, Chang J. Synthesis of 2 H-Azirines via Iodine-Mediated Oxidative Cyclization of Enamines. J Org Chem 2018; 83:14954-14961. [PMID: 30474371 DOI: 10.1021/acs.joc.8b02022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A facile and practical oxidative cyclization reaction of enamines to 2 H-azirines has been developed, employing molecular iodine. The features of the present synthetic approach include no use of transition metals, mild reaction conditions, and simplicity of operation. Under the optimal reaction conditions, a variety of 2 H-azirine derivatives were synthesized from simple and readily accessible enamine precursors in an efficient and scalable fashion.
Collapse
Affiliation(s)
- Manman Wang
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou , Henan 450001 , People's Republic of China
| | - Jiao Hou
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou , Henan 450001 , People's Republic of China
| | - Wenquan Yu
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou , Henan 450001 , People's Republic of China
| | - Junbiao Chang
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou , Henan 450001 , People's Republic of China
| |
Collapse
|