1
|
Jiao RQ, Li M, Chen X, Zhang Z, Gong XP, Yue H, Liu XY, Liang YM. Copper-Catalyzed Selective Three-Component 1,2-Phosphonoazidation of 1,3-Dienes. Org Lett 2024; 26:1387-1392. [PMID: 38341862 DOI: 10.1021/acs.orglett.3c04308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
We report a copper-catalyzed selective 1,2-phosphonoazidation of conjugated dienes. This three-component reaction is achieved by using readily available P(O)-H compounds and bench-stable NaN3. Salient features of this strategy include its mild reaction conditions, broad functional group tolerance, and high chemoselectivity and regioselectivity. Moreover, the compatibility with the late-stage functionalization of drug molecules, the potential for scalable production, and the feasibility of further modifications of the products underscore the practical utility of this protocol in synthetic applications.
Collapse
Affiliation(s)
- Rui-Qiang Jiao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Ming Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xi Chen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Ping Gong
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Heng Yue
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Liu Y, Yan H, Chen Y, Hao E, Shi L. Photoinduced copper-catalyzed selective three-component 1,2-amino oxygenation of 1,3-dienes. Chem Commun (Camb) 2023; 59:10388-10391. [PMID: 37551551 DOI: 10.1039/d3cc02769d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
This study presents a highly effective method for the photoinduced copper-catalyzed 1,2-amino oxygenation of 1,3-dienes. This synthetic strategy involves the dual roles of a single copper catalyst, which can act as a photosensitizer to generate nitrogen radicals and can also react with allyl radicals via single electron transfer (SET) processes. The method produces a range of quaternary carbon-centered allyl carboxylic esters and tertiary ethers with high yields and excellent regioselectivity under mild reaction conditions.
Collapse
Affiliation(s)
- Yonghong Liu
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China.
| | - Huaipu Yan
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China.
| | - Yuqing Chen
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China.
| | - Erjun Hao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, China
| | - Lei Shi
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China.
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, China
| |
Collapse
|
3
|
Wu YL, Jiang M, Rao L, Cheng Y, Xiao WJ, Chen JR. Selective Three-Component 1,2-Aminoalkoxylation of 1-Aryl-1,3-dienes by Dual Photoredox and Copper Catalysis. Org Lett 2022; 24:7470-7475. [PMID: 36173401 DOI: 10.1021/acs.orglett.2c03124] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A three-component 1,2-aminooxygenation reaction of 1,3-dienes by dual photoredox and copper catalysis is described. This protocol uses N-aminopyridinium salts as N-centered radical precursors and nucleophilic alcohols as oxygen sources, providing modular and practical access to 1,2-aminoalkoxylation products with good yields and regioselectivity. Preliminary mechanistic studies support the radical property of the reaction and the involvement of N-centered radical intermediates.
Collapse
Affiliation(s)
- Ya-Li Wu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Min Jiang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, P. R. China
| | - Li Rao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ying Cheng
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| |
Collapse
|
4
|
Liu H, Li Y, Yang Z, Ge Q, Wu Z, Zhang W. Pd‐Catalyzed Aerobic Intermolecular 1,2‐Diamination of Conjugated Dienes: Regio‐ and Chemoselective Synthesis of Piperazines and 2‐Piperazinones. Chemistry 2022; 28:e202201808. [DOI: 10.1002/chem.202201808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Huikang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Yunyi Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Zehua Yang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research Institute of Pharmacy & Pharmacology School of Pharmaceutical Science Hengyang Medical School University of South China Hengyang Hunan 421001 P. R. China
| | - Qianyi Ge
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research Institute of Pharmacy & Pharmacology School of Pharmaceutical Science Hengyang Medical School University of South China Hengyang Hunan 421001 P. R. China
| | - Zhengxing Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
5
|
Burg F, Rovis T. Rh(III)-catalyzed Intra- and Intermolecular 3,4-Difunctionalization of 1,3-Dienes via Rh(III)-π-allyl Amidation with 1,4,2-Dioxazolones. ACS Catal 2022; 12:9690-9697. [PMID: 37829170 PMCID: PMC10569259 DOI: 10.1021/acscatal.2c02537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We herein report a modular strategy, which enables Rh(III)-catalyzed diastereoselective 3,4-amino oxygenation and diamination of 1,3-dienes using different O- and N-nucleophiles in combination with readily available 3-substituted 1,4,2-dioxazolones (78 examples, 37-91% yield). Previous attempts to functionalize the internal double bond rested on the use of plain alcoholic solvents as nucleophilic coupling partners thus dramatically limiting the scope of this transformation. We have now identified hexafluoroisopropanol as a non-nucleophilic solvent which allows the use of diverse nucleophiles and greatly expands the scope, including an unprecedented amino hydroxylation to selectively install valuable, unprotected β-amino alcohols across 1,3-dienes. Moreover, various elaborate alcohols prove to be compatible providing unique access to complex organic molecules. Finally, this method is employed in a series of intramolecular reactions to deliver valuable nitrogen heterocycles as well as γ- and δ-lactones.
Collapse
Affiliation(s)
- Finn Burg
- Department of Chemistry, Columbia University, New York 10027, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York 10027, United States
| |
Collapse
|
6
|
Tabaru K, Obora Y. Synergic Palladium Catalysis for Aerobic Oxidative Coupling. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kazuki Tabaru
- Kansai University: Kansai Daigaku Department of Chemistry and Materials Engineering 3-3-35 Yamate-cho 564-8680 Suita JAPAN
| | - Yasushi Obora
- Kansai University: Kansai Daigaku Department of Chemistry and Materials Engineering 3-3-35 Yamate-cho 564-8680 Suita JAPAN
| |
Collapse
|
7
|
Selectfluor Mediated Difunctionalization of Olefins towards the Synthesis of Fluoromethylated Morpholines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Burg F, Rovis T. Diastereoselective Three-Component 3,4-Amino Oxygenation of 1,3-Dienes Catalyzed by a Cationic Heptamethylindenyl Rhodium(III) Complex. J Am Chem Soc 2021; 143:17964-17969. [PMID: 34668705 DOI: 10.1021/jacs.1c09276] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The direct oxyamination of olefins is a compelling tool to rapidly access β-amino alcohols-a privileged motif ubiquitous in natural products, pharmaceuticals and agrochemicals. Although a variety of expedient methods are established for simple alkenes, selective amino oxygenation of 1,3-dienes is less explored. Within this context, methods for the oxyamination of 1,3-dienes that are selective for the internal position remain unprecedented. We herein report a modular three-component approach to perform an internal and highly diastereoselective amino oxygenation of 1,3-dienes catalyzed by a cationic heptamethylindenyl (Ind*) Rh(III) complex.
Collapse
Affiliation(s)
- Finn Burg
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
9
|
Forster D, Guo W, Wang Q, Zhu J. Photoredox Catalytic Three-Component Amidoazidation of 1,3-Dienes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03545] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Dan Forster
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Weisi Guo
- College of Chemistry & Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao 266042, P. R. China
| | - Qian Wang
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Wu Z, Hu M, Li J, Wu W, Jiang H. Recent advances in aminative difunctionalization of alkenes. Org Biomol Chem 2021; 19:3036-3054. [PMID: 33734255 DOI: 10.1039/d0ob02446e] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alkenes are versatile building blocks in modern organic synthesis. In the difunctionalization reactions of alkenes, two functional groups can be simultaneously introduced into the π system. This is an efficient strategy for the synthesis of multifunctional compounds with complex structures and has the advantages of atom and step economy. Nitrogen-containing organic compounds are widely found in natural products and synthetic compounds, such as dyes, pesticides, medicines, artificial resins, and so on. Many natural products with high biological activity and a broad range of drugs have nitrogen-containing functional groups. The research on the construction methods of C-N bonds has always been one of the most important tasks in organic synthesis, especially in drug synthesis, and the synthetic methods starting from simple and easily available raw materials have been a topic of interest to chemists. The aminative difunctionalization of alkenes can efficiently construct C-N bonds, and at the same time, prepare some compounds that usually require multiple steps of reaction. It is one of the most effective strategies for the simple and efficient synthesis of functionalized nitrogen-containing compounds. This review outlines the major developments focusing on the transition metal-catalyzed or metal-free diamination, aminohalogenation, aminocarbonation, amino-oxidation and aminoboronation reactions of alkenes from 2015-2020.
Collapse
Affiliation(s)
- Ziying Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | | | | | | | | |
Collapse
|
11
|
Takahashi H, Nagashima Y, Tanaka K. Rhodium(III)‐Catalyzed Oxidative Intramolecular 1,1‐Oxyamination of Alkenes with Protected Amino Acids to Produce Oxazoloisoindole‐2,5‐diones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hiroto Takahashi
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku 152-8550 Tokyo Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku 152-8550 Tokyo Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku 152-8550 Tokyo Japan
| |
Collapse
|
12
|
Sajjad F, Chen Y, Tian X, Dong S, Gopi Krishna Reddy A, Hu W, Xing D. Facile synthesis of 1,4-oxazines by ruthenium-catalyzed tandem N-H insertion/cyclization of α-arylamino ketones and diazo pyruvates. Org Biomol Chem 2021; 19:1769-1772. [PMID: 33538720 DOI: 10.1039/d0ob01913e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, we report an efficient strategy for the rapid construction of 1,4-oxazines starting from simple α-amino ketones and diazo pyruvates under mild reaction conditions. This transformation is efficiently catalyzed by RuCl3 through a tandem N-H insertion/cyclization sequence via an enol formation. This reaction shows broad functional group tolerance, and the resulting 1,4-oxazine products show promising anticancer activities toward HCT116.
Collapse
Affiliation(s)
- Farrukh Sajjad
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Rd., Shanghai, 200062, China.
| | - Yanmei Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Rd., Shanghai, 200062, China.
| | - Xue Tian
- A School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Suzhen Dong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Rd., Shanghai, 200062, China.
| | | | - Wenhao Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Rd., Shanghai, 200062, China. and A School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Dong Xing
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Rd., Shanghai, 200062, China.
| |
Collapse
|
13
|
Hemric BN. Beyond osmium: progress in 1,2-amino oxygenation of alkenes, 1,3-dienes, alkynes, and allenes. Org Biomol Chem 2021; 19:46-81. [PMID: 33174579 DOI: 10.1039/d0ob01938k] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Olefin 1,2-difunctionalization has emerged as a popular strategy within modern synthetic chemistry for the synthesis of vicinal amino alcohols and derivatives. The advantage of this approach is the single-step simplicity for rapid diversification, feedstock nature of the olefin starting materials, and the possible modularity of the components. Although there is a vast number of possible iterations of 1,2-olefin difunctionalization, 1,2-amino oxygenation is of particular interest due to the prevalence of both oxygen and nitrogen within pharmaceuticals, natural products, agrochemicals, and synthetic ligands. The Sharpless amino hydroxylation provided seminal results in this field and displayed the value in achieving methods of this nature. However, a vast number of new and novel methods have emerged in recent decades. This review provides a comprehensive review of modern advances in accomplishing 1,2-amino oxygenation of alkenes, 1,3-dienes, alkynes, and allenes that move beyond osmium to a range of other transition metals and more modern strategies such as electrochemical, photochemical, and biochemical reactivity.
Collapse
Affiliation(s)
- Brett N Hemric
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
14
|
Guo W, Wang Q, Zhu J. Selective 1,2‐Aminoisothiocyanation of 1,3‐Dienes Under Visible‐Light Photoredox Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202014518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Weisi Guo
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
- College of Chemistry & Molecular Engineering Qingdao University of Science & Technology 53 Zhengzhou Road Qingdao P. R. China
| | - Qian Wang
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| |
Collapse
|
15
|
Guo W, Wang Q, Zhu J. Selective 1,2‐Aminoisothiocyanation of 1,3‐Dienes Under Visible‐Light Photoredox Catalysis. Angew Chem Int Ed Engl 2020; 60:4085-4089. [DOI: 10.1002/anie.202014518] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Weisi Guo
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
- College of Chemistry & Molecular Engineering Qingdao University of Science & Technology 53 Zhengzhou Road Qingdao P. R. China
| | - Qian Wang
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| |
Collapse
|
16
|
New oxyalkyl derivatives of trifluoromethanesulfonamide: Dynamic rivalry between different types of chain and cyclic associates in different phase states. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Wang D, Liu Y, Zhu W, Shen H, Liu H, Fu L. Efficient Synthesis of Substituted Morpholine Derivatives via an Indium(III)-catalyzed Reductive Etherification Reaction. CHEM LETT 2020. [DOI: 10.1246/cl.200142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Di Wang
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, P. R. China
- Roche Pharmaceutical Research & Early Development, Department of Medicinal Chemistry, Roche Innovation Center Shanghai, 720 Cailun Road, Building 5, Pudong, Shanghai 201203, P. R. China
| | - Yafei Liu
- Roche Pharmaceutical Research & Early Development, Department of Medicinal Chemistry, Roche Innovation Center Shanghai, 720 Cailun Road, Building 5, Pudong, Shanghai 201203, P. R. China
| | - Wei Zhu
- Roche Pharmaceutical Research & Early Development, Department of Medicinal Chemistry, Roche Innovation Center Shanghai, 720 Cailun Road, Building 5, Pudong, Shanghai 201203, P. R. China
| | - Hong Shen
- Roche Pharmaceutical Research & Early Development, Department of Medicinal Chemistry, Roche Innovation Center Shanghai, 720 Cailun Road, Building 5, Pudong, Shanghai 201203, P. R. China
| | - Haixia Liu
- Roche Pharmaceutical Research & Early Development, Department of Medicinal Chemistry, Roche Innovation Center Shanghai, 720 Cailun Road, Building 5, Pudong, Shanghai 201203, P. R. China
| | - Lei Fu
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, P. R. China
| |
Collapse
|
18
|
Yang S, Chen Y, Yuan Z, Bu F, Jiang C, Ding Z. Divergent synthesis of oxazolidines and morpholines via PhI(OAc)2-mediated difunctionalization of alkenes. Org Biomol Chem 2020; 18:9873-9882. [DOI: 10.1039/d0ob01987a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we describe the PhI(OAc)2-mediated 1,1- and 1,2-difunctionalization of alkenes with N-tosyl amino alcohols to form oxazolidine and morpholine derivatives.
Collapse
Affiliation(s)
- Shuang Yang
- Jiangsu Key Laboratory of Drug Design and Optimization
- Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 211198
| | - Yuhang Chen
- Jiangsu Key Laboratory of Drug Design and Optimization
- Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 211198
| | - Zidan Yuan
- Jiangsu Key Laboratory of Drug Design and Optimization
- Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 211198
| | - Feiyu Bu
- Jiangsu Key Laboratory of Drug Design and Optimization
- Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 211198
| | - Cheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization
- Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 211198
| | - Zhenhua Ding
- Jiangsu Key Laboratory of Drug Design and Optimization
- Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 211198
| |
Collapse
|
19
|
Aubineau T, Cossy J. Metal-Catalyzed Cyclization: Synthesis of (Benzo)morpholines and (Benzo)[1,4]dihydrooxazines. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Thomas Aubineau
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris, CNRS; PSL University; 10 rue Vauquelin 75005 Paris France
| | - Janine Cossy
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris, CNRS; PSL University; 10 rue Vauquelin 75005 Paris France
| |
Collapse
|
20
|
Hemric BN, Chen AW, Wang Q. Copper-Catalyzed 1,2-Amino Oxygenation of 1,3-Dienes: A Chemo-, Regio-, and Site-Selective Three-Component Reaction with O-Acylhydroxylamines and Carboxylic Acids. ACS Catal 2019; 9:10070-10076. [PMID: 31692984 DOI: 10.1021/acscatal.9b03076] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A three-component reaction for 1,2-amino oxygenation of 1,3-dienes has been achieved using O-acyl hydroxylamines and carboxylic acids. The reaction occurs through copper-catalyzed amination of olefins followed by nucleophilic addition of carboxylic acids, offering high levels of chemo-, regio-, and site-selectivity. The method is effective for both terminal and internal 1,3-dienes, including those bearing multiple, unsymmetrical substituents. The amino oxygenation conditions also exhibited remarkable selectivity toward 1,3-dienes over alkenes, good tolerance of sensitive functional groups, and reliable scalability.
Collapse
Affiliation(s)
- Brett N. Hemric
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Andy W. Chen
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Qiu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
21
|
|
22
|
Ye C, Kou X, Yang G, Shen J, Zhang W. PhI(OAc)2-mediated alkoxyoxygenation of β,γ-unsaturated ketoximes: Preparation of isoxazolines bearing two contiguous tetrasubstituted carbons. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.03.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
Fan T, Shen HC, Han ZY, Gong LZ. Palladium-Catalyzed Asymmetric Dihydroxylation of 1,3-Dienes with Catechols. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201800540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tao Fan
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry; University of Science and Technology of China; Hefei Anhui 230026 China
| | - Hong-Cheng Shen
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry; University of Science and Technology of China; Hefei Anhui 230026 China
| | - Zhi-Yong Han
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry; University of Science and Technology of China; Hefei Anhui 230026 China
| | - Liu-Zhu Gong
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry; University of Science and Technology of China; Hefei Anhui 230026 China
| |
Collapse
|
24
|
Wang L, Cheng P, Wang X, Wang W, Zeng J, Liang Y, Reiser O. Visible-light promoted sulfonamidation of enol acetates to α-amino ketones based on redox-neutral photocatalysis. Org Chem Front 2019. [DOI: 10.1039/c9qo01119f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible-light mediated photoredox-catalyzed sulfonamidation of enol acetates to α-amino ketones has been developed. The process features mild and operationally simple reaction conditions and does not require an external oxidant.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Traditional Chinese Veterinary Medicine of Hunan Province
- Hunan Agricultural University
- Changsha
- China
| | - Pi Cheng
- Key Laboratory of Traditional Chinese Veterinary Medicine of Hunan Province
- Hunan Agricultural University
- Changsha
- China
| | - Xinhao Wang
- Key Laboratory of Traditional Chinese Veterinary Medicine of Hunan Province
- Hunan Agricultural University
- Changsha
- China
| | - Wei Wang
- Key Laboratory of Traditional Chinese Veterinary Medicine of Hunan Province
- Hunan Agricultural University
- Changsha
- China
| | - Jianguo Zeng
- Key Laboratory of Traditional Chinese Veterinary Medicine of Hunan Province
- Hunan Agricultural University
- Changsha
- China
| | - Yun Liang
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
- Hunan Normal University
- Changsha
- China
| | - Oliver Reiser
- Institut für Organische Chemie
- Universität Regensburg
- 93053 Regensburg
- Germany
| |
Collapse
|
25
|
Li Y, Wu Z, Ling Z, Chen H, Zhang W. Mechanistic study of the solvent-controlled Pd(ii)-catalyzed chemoselective intermolecular 1,2-aminooxygenation and 1,2-oxyamination of conjugated dienes. Org Chem Front 2019. [DOI: 10.1039/c8qo01288a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The different coordination modes in MeCN and DMSO solvents could clarify the origin of chemoselectivity.
Collapse
Affiliation(s)
- Yunyi Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P.R. China
| | - Zhengxing Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P.R. China
| | - Zheng Ling
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P.R. China
| | - Hongjin Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P.R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P.R. China
| |
Collapse
|
26
|
Sen A, Takenaka K, Sasai H. Enantioselective Aza-Wacker-Type Cyclization Promoted by Pd-SPRIX Catalyst. Org Lett 2018; 20:6827-6831. [DOI: 10.1021/acs.orglett.8b02946] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Abhijit Sen
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Kazuhiro Takenaka
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Hiroaki Sasai
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| |
Collapse
|