1
|
Zhang JM, Yuan GY, Zou Y. Enzymatic ester bond formation strategies in fungal macrolide skeletons. Nat Prod Rep 2025. [PMID: 39831437 DOI: 10.1039/d4np00050a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Covering: up to August 2024Macrolides, the core skeletons of numerous marketed drugs and bioactive natural products, have garnered considerable scientific interest owing to their structural diversity and broad spectrum of pharmaceutical activities. The formation of intramolecular ester bonds is a critical biocatalytic step in constructing macrolide skeletons. Here, we summarised enzymatic ester bond formation strategies in fungal polyketide (PK)-type, nonribosomal peptide (NRP)-type, and PK-NRP hybrid-type macrolides. In PK-type macrolides, ester bond formation is commonly catalysed by a trans-acting thioesterase (TE) or a cis-acting TE domain during the product release process. In NRP-type and PK-NRP hybrid-type macrolides, the ester bond is usually introduced through condensation (C) domain-catalysed esterification during the elongation or product release step. Although the TE and C domains share similarities in their catalytic mechanism, using hydroxyl groups as nucleophiles in an intramolecular nucleophilic attack, they differ in terms of the hydroxyl origin, the timing of ester bond formation, and domain location. Furthermore, some TE domains are utilized as chemoenzymatic catalysts to construct macrolides with different ring sizes. A comparison of ester bond formation between fungi and bacteria is also discussed. Exploring the biosynthetic pathways of fungal macrolides, elucidating the diverse strategies employed in the formation of ester bonds, and understanding the application of enzymes/domains in chemoenzymatic synthesis hold promise for the discovery of new bioactive macrolides in the future.
Collapse
Affiliation(s)
- Jin-Mei Zhang
- College of Pharmaceutical Sciences, Southwest University, 400715 Chongqing, China.
| | - Guan-Yin Yuan
- College of Pharmaceutical Sciences, Southwest University, 400715 Chongqing, China.
| | - Yi Zou
- College of Pharmaceutical Sciences, Southwest University, 400715 Chongqing, China.
| |
Collapse
|
2
|
Paquette AR, Brazeau-Henrie JT, Boddy CN. Thioesterases as tools for chemoenzymatic synthesis of macrolactones. Chem Commun (Camb) 2024; 60:3379-3388. [PMID: 38456624 DOI: 10.1039/d4cc00401a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Macrocycles are a key functional group that can impart unique properties into molecules. Their synthesis has led to the development of many outstanding chemical methodologies and yet still remains challenging. Thioesterase (TE) domains are frequently responsible for macrocyclization in natural product biosynthesis and provide unique strengths for the enzymatic synthesis of macrocycles. In this feature article, we describe our work to characterize the substrate selectivity of TEs and to use these enzymes as biocatalysts. Our efforts have shown that the linear thioester activated substrates are loaded on TEs with limited substrate selectivity to generate acyl-enzyme intermediates. We show that cyclization of the acyl-enzyme intermediates can be highly selective, with competing hydrolysis of the acyl-enzyme intermediates. The mechanisms controlling TE-mediated macrocyclization versus hydrolysis are a significant unsolved problem in TE biochemistry. The potential of TEs as biocatalysts was demonstrated by using them in the chemoenzymatic total synthesis of macrocyclic depsipeptide natural products. This article highlights the strengths and potential of TEs as biocatalysts as well as their limitations, opening exciting research opportunities including TE engineering to optimize these powerful biocatalysts.
Collapse
Affiliation(s)
- André R Paquette
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada K1N 6N5.
| | - Jordan T Brazeau-Henrie
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada K1N 6N5.
| | - Christopher N Boddy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada K1N 6N5.
| |
Collapse
|
3
|
Lv X, Su F, Long H, Lu F, Zeng Y, Liao M, Che F, Wu X, Chi YR. Carbene organic catalytic planar enantioselective macrolactonization. Nat Commun 2024; 15:958. [PMID: 38302464 PMCID: PMC10834540 DOI: 10.1038/s41467-024-45218-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
Macrolactones exhibit distinct conformational and configurational properties and are widely found in natural products, medicines, and agrochemicals. Up to now, the major effort for macrolactonization is directed toward identifying suitable carboxylic acid/alcohol coupling reagents to address the challenges associated with macrocyclization, wherein the stereochemistry of products is usually controlled by the substrate's inherent chirality. It remains largely unexplored in using catalysts to govern both macrolactone formation and stereochemical control. Here, we disclose a non-enzymatic organocatalytic approach to construct macrolactones bearing chiral planes from achiral substrates. Our strategy utilizes N-heterocyclic carbene (NHC) as a potent acylation catalyst that simultaneously mediates the macrocyclization and controls planar chirality during the catalytic process. Macrolactones varying in ring sizes from sixteen to twenty members are obtained with good-to-excellent yields and enantiomeric ratios. Our study shall open new avenues in accessing macrolactones with various stereogenic elements and ring structures by using readily available small-molecule catalysts.
Collapse
Affiliation(s)
- Xiaokang Lv
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Fen Su
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Hongyan Long
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Fengfei Lu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Yukun Zeng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Minghong Liao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Fengrui Che
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Xingxing Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China.
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China.
- School of chemistry, chemical engineering, and biotechnology, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
4
|
Lepetit CA, Paquette AR, Brazeau-Henrie JT, Boddy CN. Total and chemoenzymatic synthesis of the lipodepsipeptide rhizomide A. Bioorg Med Chem Lett 2023; 96:129506. [PMID: 37820774 DOI: 10.1016/j.bmcl.2023.129506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Rhizomides are a family of depsipeptide macrolactones synthesized by a non-ribosomal peptide synthetase (NRPS) encoded in the genome of Paraburkholderia rhizoxinica str. HKI 454. In this study, the total and chemoenzymatic synthesis of the depsipeptide rhizomide A is described. Rhizomide A was generated through macrolactamization while thelinear C-terminal N-acetylcysteamine (SNAC) thioester substrate was synthesized through a C-terminal thioesterification strategy. It was shown that the rhizomide A thioesterase (RzmA-TE) is an active macrocyclization catalyst, allowing the chemoenzymatic synthesis of rhizomide A.This work further showcases the biocatalytic power of TEs in accessing complex macrocyclic natural products.
Collapse
Affiliation(s)
- Corinne A Lepetit
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; Cergy Paris Université, 5 Mail Gay Lussac, 95000 Cergy, France
| | - André R Paquette
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Jordan T Brazeau-Henrie
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Christopher N Boddy
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
5
|
Zhang P, Lv Z, Lu Z, Ma W, Bie X. Effects of the deletion and substitution of thioesterase on bacillomycin D synthesis. Biotechnol Lett 2023:10.1007/s10529-023-03373-z. [PMID: 37266877 DOI: 10.1007/s10529-023-03373-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/04/2023] [Accepted: 03/31/2023] [Indexed: 06/03/2023]
Abstract
OBJECTIVES The importance of thioesterase domains on bacillomycin D synthesis and the ability of different thioesterase domains to selectively recognize and catalyze peptide chain hydrolysis and cyclization were studied by deleting and substituting thioesterase domains. RESULTS No bacillomycin D analogs were found in the thioesterase-deleted strain fmbJ-ΔTE, indicating that the TE domain was essential for bacillomycin D synthesis. Then the thioesterase in bacillomycin D synthetases was replaced by the thioesterase in bacillomycin F, iturin A, mycosubtilin, plipastatin and surfactin synthetases. Except for fmbJ-S-TE, all others were able to synthesize bacillomycin D homologs because a suitable recombination site was selected, which maintained the integrity of NRPSs. In particular, the yield of bacillomycin D in fmbJ-IA-TE, fmbJ-M-TE and fmbJ-P-TE was significantly increased. CONCLUSION This study expands our understanding of the TE domain in bacillomycin D synthetases and shows that thioesterase has excellent potential in the chemical-enzymatic synthesis of natural products or their analogs.
Collapse
Affiliation(s)
- Ping Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ziyan Lv
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Wenjie Ma
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
6
|
Adrover-Castellano ML, Schmidt JJ, Sherman DH. Biosynthetic Cyclization Catalysts for the Assembly of Peptide and Polyketide Natural Products. ChemCatChem 2021; 13:2095-2116. [PMID: 34335987 PMCID: PMC8320681 DOI: 10.1002/cctc.202001886] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 12/13/2022]
Abstract
Many biologically active natural products are synthesized by nonribosomal peptide synthetases (NRPSs), polyketide synthases (PKSs) and their hybrids. These megasynthetases contain modules possessing distinct catalytic domains that allow for substrate initiation, chain extension, processing and termination. At the end of a module, a terminal domain, usually a thioesterase (TE), is responsible for catalyzing the release of the NRPS or PKS as a linear or cyclized product. In this review, we address the general cyclization mechanism of the TE domain, including oligomerization and the fungal C-C bond forming Claisen-like cyclases (CLCs). Additionally, we include examples of cyclization catalysts acting within or at the end of a module. Furthermore, condensation-like (CT) domains, terminal reductase (R) domains, reductase-like domains that catalyze Dieckmann condensation (RD), thioesterase-like Dieckmann cyclases, trans-acting TEs from the penicillin binding protein (PBP) enzyme family, product template (PT) domains and others will also be reviewed. The studies summarized here highlight the remarkable diversity of NRPS and PKS cyclization catalysts for the production of biologically relevant, complex cyclic natural products and related compounds.
Collapse
Affiliation(s)
| | - Jennifer J Schmidt
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216 (USA)
| | - David H Sherman
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216 (USA)
| |
Collapse
|
7
|
Wang C, Wang X, Zhang L, Yue Q, Liu Q, Xu YM, Gunatilaka AAL, Wei X, Xu Y, Molnár I. Intrinsic and Extrinsic Programming of Product Chain Length and Release Mode in Fungal Collaborating Iterative Polyketide Synthases. J Am Chem Soc 2020; 142:17093-17104. [PMID: 32833442 DOI: 10.1021/jacs.0c07050] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Combinatorial biosynthesis with fungal polyketide synthases (PKSs) promises to produce unprecedented bioactive "unnatural" natural products (uNPs) for drug discovery. Genome mining of the dothideomycete Rhytidhysteron rufulum uncovered a collaborating highly reducing PKS (hrPKS)-nonreducing PKS (nrPKS) pair. These enzymes produce trace amounts of rare S-type benzenediol macrolactone congeners with a phenylacetate core in a heterologous host. However, subunit shuffling and domain swaps with voucher enzymes demonstrated that all PKS domains are highly productive. This contradiction led us to reveal novel programming layers exerted by the starter unit acyltransferase (SAT) and the thioesterase (TE) domains on the PKS system. First, macrocyclic vs linear product formation is dictated by the intrinsic biosynthetic program of the TE domain. Next, the chain length of the hrPKS product is strongly influenced in trans by the off-loading preferences of the nrPKS SAT domain. Last, TE domains are size-selective filters that facilitate or obstruct product formation from certain priming units. Thus, the intrinsic programs of the SAT and TE domains are both part of the extrinsic program of the hrPKS subunit and modulate the observable metaprogram of the whole PKS system. Reconstruction of SAT and TE phylogenies suggests that these domains travel different evolutionary trajectories, with the resulting divergence creating potential conflicts in the PKS metaprogram. Such conflicts often emerge in chimeric PKSs created by combinatorial biosynthesis, reducing biosynthetic efficiency or even incapacitating the system. Understanding the points of failure for such engineered biocatalysts is pivotal to advance the biosynthetic production of uNPs.
Collapse
Affiliation(s)
- Chen Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.,Southwest Center for Natural Products Research, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States
| | - Xiaojing Wang
- Microbial Pharmacology Laboratory, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai 201318, P. R. China
| | - Liwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Qun Yue
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Qingpei Liu
- Southwest Center for Natural Products Research, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States.,School of Pharmaceutical Sciences, South-Central University for Nationalities, 182 Minyuan Road, Hongshan District, Wuhan 430074, P. R. China
| | - Ya-Ming Xu
- Southwest Center for Natural Products Research, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States
| | - A A Leslie Gunatilaka
- Southwest Center for Natural Products Research, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States
| | - Xiaoyi Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
| | - Yuquan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States
| |
Collapse
|
8
|
Qiao L, Fang J, Zhu P, Huang H, Dang C, Pang J, Gao W, Qiu X, Huang L, Li Y. A Novel Chemoenzymatic Approach to Produce Cilengitide Using the Thioesterase Domain from Microcystis aeruginosa Microcystin Synthetase C. Protein J 2020; 38:658-666. [PMID: 31435810 DOI: 10.1007/s10930-019-09864-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Modern organic chemistry faces many difficulties in the reliable production of cyclopeptides, such as poor yields and insufficient regio- and stereoselectivity. Thioesterase (TE) shows impressive stereospecificity, region- and chemoselectivity during the cyclization of peptide substrates. The biocatalytic properties of TE provide high value for industrial applications. Herein, a novel chemoenzymatic method to synthesize cilengitide is described based on the cyclic activity of the TE domain from microcystin synthetase C (McyC) of Microcystis aeruginosa. In addition, a single active site mutation in the McyC TE was engineered to generate a more effective macrocyclization catalyst. Compared to the chemical approach to synthesize cilengitide, this novel enzyme-catalysed methodology exhibits a higher synthetic efficiency with an approximately 3.4-fold higher yield (49.2%).
Collapse
Affiliation(s)
- Longliang Qiao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Jian Fang
- College of Medicine, Shaoxing University, Shaoxing, 312000, China
| | - Peng Zhu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China. .,Ningbo Institute of Oceanography, Ningbo, 315832, China.
| | - Hailong Huang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Chenyang Dang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Jianhu Pang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Weifang Gao
- Ningbo Institute of Oceanography, Ningbo, 315832, China
| | - Xiaoting Qiu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Lili Huang
- Ningbo Institute of Oceanography, Ningbo, 315832, China
| | - Yanrong Li
- Ningbo Institute of Oceanography, Ningbo, 315832, China
| |
Collapse
|
9
|
Gagnon C, Godin É, Minozzi C, Sosoe J, Pochet C, Collins SK. Biocatalytic synthesis of planar chiral macrocycles. Science 2020; 367:917-921. [DOI: 10.1126/science.aaz7381] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/21/2020] [Indexed: 12/25/2022]
Abstract
Macrocycles can restrict the rotation of substituents through steric repulsions, locking in conformations that provide or enhance the activities of pharmaceuticals, agrochemicals, aroma chemicals, and materials. In many cases, the arrangement of substituents in the macrocycle imparts an element of planar chirality. The difficulty in predicting when planar chirality will arise, as well as the limited number of synthetic methods to impart selectivity, have led to planar chirality being regarded as an irritant. We report a strategy for enantio- and atroposelective biocatalytic synthesis of planar chiral macrocycles. The macrocycles can be formed with high enantioselectivity from simple building blocks and are decorated with functionality that allows one to further modify the macrocycles with diverse structural features.
Collapse
Affiliation(s)
- Christina Gagnon
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station Downtown, Montréal, Québec H3C 3J7, Canada
| | - Éric Godin
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station Downtown, Montréal, Québec H3C 3J7, Canada
| | - Clémentine Minozzi
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station Downtown, Montréal, Québec H3C 3J7, Canada
| | - Johann Sosoe
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station Downtown, Montréal, Québec H3C 3J7, Canada
| | - Corentin Pochet
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station Downtown, Montréal, Québec H3C 3J7, Canada
| | - Shawn K. Collins
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station Downtown, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
10
|
Du LH, Dong Z, Long RJ, Chen PF, Xue M, Luo XP. The convenient Michael addition of imidazoles to acrylates catalyzed by Lipozyme TL IM from Thermomyces lanuginosus in a continuous flow microreactor. Org Biomol Chem 2019; 17:807-812. [PMID: 30629063 DOI: 10.1039/c8ob02533a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fast and green protocol for the Michael addition of imidazoles to acrylates catalyzed by Lipozyme TL IM from Thermomyces lanuginosus in a continuous flow microreactor was developed. In contrast with existing methods, this method is simple (35 min), uses mild reaction conditions (45 °C) and is environmentally friendly. This enzymatic Michael addition performed in continuous flow microreactors is an innovation that may open up the use of enzymatic microreactors in imidazole analogue biotransformations.
Collapse
Affiliation(s)
- Li-Hua Du
- College of Pharmaceutical Science, ZheJiang University of Technology, Zhejiang, Hangzhou, 310014, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
11
|
Liu L, Tao W, Bai L, Kim ES, Zhao YL, Shi T. Why does tautomycetin thioesterase prefer hydrolysis to macrocyclization? Theoretical study on its catalytic mechanism. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01355e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we attempted to uncover the reasons why Tautomycetin thioesterase (TMC TE) prefers hydrolysis rather than macrocyclization, and reveal the molecular basis of TE-catalyzed hydrolysis and macrocyclization.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Microbial Metabolism
- Joint International Research Laboratory of Metabolic and Developmental Sciences
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Wentao Tao
- State Key Laboratory of Microbial Metabolism
- Joint International Research Laboratory of Metabolic and Developmental Sciences
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism
- Joint International Research Laboratory of Metabolic and Developmental Sciences
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Eung-Soo Kim
- Department of Biological Engineering
- Inha University
- Incheon
- Korea
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism
- Joint International Research Laboratory of Metabolic and Developmental Sciences
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism
- Joint International Research Laboratory of Metabolic and Developmental Sciences
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| |
Collapse
|