1
|
Murali AC, Panda R, Kannan R, Das R, Venkatasubbaiah K. O,S-Chelated bis(pentafluorophenyl)boron and diphenylboron-β-thioketonates: synthesis, photophysical, electrochemical and NLO properties. Dalton Trans 2024; 53:17263-17271. [PMID: 39370823 DOI: 10.1039/d4dt02471k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Boron-β-diketonates are classical emissive materials that have been utilized in various fields, however, boron monothio-β-thioketonates, where one oxygen atom is exchanged for a sulphur atom, have not been explored in detail. To gain a better understanding of this class of materials, we synthesised various aryl substituted monothio-β-diketonate boron complexes with two different aryl substitutions on the boron center and studied their structural, optical and electrochemical properties. Single crystal X-ray analysis revealed that there is considerable deviation in B-O and B-S bond lengths for bis(pentafluorophenyl)boron complexes against diphenyl boron complexes. The bis(pentafluorophenyl)boron complexes have a relatively high absorption coefficient over diphenyl boron complexes. More importantly, a striking difference was observed for the emission behaviour of these compounds. The bis(pentafluorophenyl)boron complexes exhibit weak emission in the solution as well as in the solid state, whereas diphenyl boron complexes do not show any emission in either solution or the solid state. Further, the electrochemical study reveals that diphenyl boron complexes show a reduction potential that is more negative compared to the bis(pentafluorophenyl)boron complexes. The high absorption coefficient of the compounds pointed towards the possibility of high first order hyperpolarizability upon optical excitation, which motivated us to ascertain the nonlinear optical coefficients in the near infrared range, towards applicability of such compounds in optical limiting and switching. The open aperture Z-scan measurements at ultrashort time scales elucidated a few critical features of such compounds towards optical limiting applications.
Collapse
Affiliation(s)
- Anna Chandrasekar Murali
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India.
| | - Rudrashish Panda
- School of Physical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India
| | - Ramkumar Kannan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India.
| | - Ritwick Das
- School of Physical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India
- Optics and Photonics Centre, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110060, India
| | - Krishnan Venkatasubbaiah
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India.
| |
Collapse
|
2
|
In situ synthesis of reduction-responsive organogelators via oxidative coupling of tritylthio-terminated gallic acid derivatives. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Shah S, Marandi P, Neelakandan PP. Advances in the Supramolecular Chemistry of Tetracoordinate Boron-Containing Organic Molecules into Organogels and Mesogens. Front Chem 2021; 9:708854. [PMID: 34557473 PMCID: PMC8452935 DOI: 10.3389/fchem.2021.708854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Boron-containing organic compounds are well accepted as a class of compounds having excellent photophysical properties. In addition to the unique photophysical properties, the ease of synthesis and structural robustness make tetracoordinate boron complexes ideal for a variety of applications. While significant light has been thrown on their luminescence properties, there is no collective attention to their supramolecular chemistry. In this mini review, we discuss the progress made in the supramolecular chemistry of these compounds which includes their utility as building blocks for liquid crystalline materials and gels largely driven by various non-covalent interactions like H-bonding, CH-π interactions, BF-π interactions and Van der Waals forces. The organoboron compounds presented here are prepared from easy-to-synthesize chelating units such as imines, diiminates, ketoiminates and diketonates. Moreover, the presence of heteroatoms such as nitrogen, oxygen and sulfur, and the presence of aromatic rings facilitate non-covalent interactions which not only favor their formation but also helps to stabilize the self-assembled structures.
Collapse
Affiliation(s)
- Sanchita Shah
- Energy and Environment Unit, Institute of Nano Science and Technology, Mohali, India
| | - Parvati Marandi
- Energy and Environment Unit, Institute of Nano Science and Technology, Mohali, India
| | - P P Neelakandan
- Energy and Environment Unit, Institute of Nano Science and Technology, Mohali, India
| |
Collapse
|
4
|
Zhai L, Shu Y, Sun J, Sun M, Song Y, Lu R. Spirofluorene-Cored Difluoroboron β-Diketonate Complexes with Terminal Carbazole: Synthesis, Self-Assembling, and Fluorescent Sensory Properties. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lu Zhai
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; 130012 Changchun P. R. China
| | - Yuanhong Shu
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; 130012 Changchun P. R. China
| | - Jingbo Sun
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; 130012 Changchun P. R. China
| | - Meng Sun
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; 130012 Changchun P. R. China
| | - Yingying Song
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; 130012 Changchun P. R. China
| | - Ran Lu
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; 130012 Changchun P. R. China
| |
Collapse
|