1
|
Svestka D, Bobal P, Waser M, Otevrel J. Asymmetric Organocatalyzed Transfer Hydroxymethylation of Isoindolinones Using Formaldehyde Surrogates. Org Lett 2024; 26:2505-2510. [PMID: 38502794 PMCID: PMC10985653 DOI: 10.1021/acs.orglett.4c00818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
The piperidine-based Takemoto catalyst has been successfully employed in a novel asymmetric transfer hydroxymethylation of activated isoindolinones, allowing us to prepare the enantioenriched hydroxymethylated adducts in good to excellent yields (48-96%) and enantiopurities (81:19-97:3 e.r.). To increase the reaction rate without compromising the selectivity, carefully optimized formaldehyde surrogates were employed, providing a convenient source of anhydrous formaldehyde with a base-triggered release. The substrate scope, including 34 entries, showed the considerable generality of the asymmetric transformation, and most entries exhibited complete conversions in 24-48 h. A scale-up experiment and multiple enantioselective downstream transformations were also carried out, suggesting the prospective synthetic utility of the products.
Collapse
Affiliation(s)
- David Svestka
- Department
of Chemical Drugs, Faculty of Pharmacy, Masaryk University, Palackeho 1, 612 00 Brno, Czechia
| | - Pavel Bobal
- Department
of Chemical Drugs, Faculty of Pharmacy, Masaryk University, Palackeho 1, 612 00 Brno, Czechia
| | - Mario Waser
- Institute
of Organic Chemistry, Johannes Kepler University, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Jan Otevrel
- Department
of Chemical Drugs, Faculty of Pharmacy, Masaryk University, Palackeho 1, 612 00 Brno, Czechia
| |
Collapse
|
2
|
Shukla K, Khushboo, Mahto P, Singh VK. Enantioselective synthesis of tetrahydrofuran spirooxindoles via domino oxa-Michael/Michael addition reaction using a bifunctional squaramide catalyst. Org Biomol Chem 2022; 20:4155-4160. [PMID: 35521781 DOI: 10.1039/d2ob00633b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An enantioselective approach for the synthesis of tetrahydrofuran spirooxindoles via domino oxa-Michael/Michael addition reaction of γ-hydroxyenones to isatylidene malononitriles, using a cinchona derived bifunctional squaramide catalyst has been developed. The methodology is the first success of enantioselective oxa-Michael addition to isatylidene malononitriles. The spiro products were obtained in excellent yields with moderate to good enantio- and diastereoselectivities. Scale-up of the reaction and synthetic transformation of the spiro product into structurally complex molecules have been performed.
Collapse
Affiliation(s)
- Khyati Shukla
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208 016, India.
| | - Khushboo
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208 016, India.
| | - Pratibha Mahto
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208 016, India.
| | - Vinod K Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208 016, India.
| |
Collapse
|
3
|
Sonsona IG, Vicenzi A, Guidotti M, Bisag GD, Fochi M, Herrera RP, Bernardi L. Investigation of Squaramide Catalysts in the Aldol Reaction En Route to Funapide. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Isaac G. Sonsona
- Department of Industrial Chemistry “Toso Montanari” & INSTM RU Bologna Alma Mater Studiorum – University of Bologna V. Risorgimento 4 40136 Bologna Italy
- Departamento de Química Orgánica Laboratorio de Organocatálisis Asimétrica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC-Universidad de Zaragoza C/ Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Andrea Vicenzi
- Department of Industrial Chemistry “Toso Montanari” & INSTM RU Bologna Alma Mater Studiorum – University of Bologna V. Risorgimento 4 40136 Bologna Italy
| | - Marco Guidotti
- Department of Industrial Chemistry “Toso Montanari” & INSTM RU Bologna Alma Mater Studiorum – University of Bologna V. Risorgimento 4 40136 Bologna Italy
| | - Giorgiana Denisa Bisag
- Department of Industrial Chemistry “Toso Montanari” & INSTM RU Bologna Alma Mater Studiorum – University of Bologna V. Risorgimento 4 40136 Bologna Italy
| | - Mariafrancesca Fochi
- Department of Industrial Chemistry “Toso Montanari” & INSTM RU Bologna Alma Mater Studiorum – University of Bologna V. Risorgimento 4 40136 Bologna Italy
| | - Raquel P. Herrera
- Departamento de Química Orgánica Laboratorio de Organocatálisis Asimétrica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC-Universidad de Zaragoza C/ Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Luca Bernardi
- Department of Industrial Chemistry “Toso Montanari” & INSTM RU Bologna Alma Mater Studiorum – University of Bologna V. Risorgimento 4 40136 Bologna Italy
| |
Collapse
|
4
|
Nasri S, Bayat M, Mirzaei F. Recent Strategies in the Synthesis of Spiroindole and Spirooxindole Scaffolds. Top Curr Chem (Cham) 2021; 379:25. [PMID: 34002298 DOI: 10.1007/s41061-021-00337-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/07/2021] [Indexed: 11/28/2022]
Abstract
Spiroindole and spirooxindole scaffolds are very important spiro-heterocyclic compounds in drug design processes. Significant attention has been directed at obtaining molecules based on spiroindole and spirooxindole derivatives that have bioactivity against cancer cells, microbes, and different types of disease affecting the human body. Due to their inherent three-dimensional nature and ability to project functionalities in all three dimensions, they have become biological targets. Considering reports on spiroindole and spirooxindole-containing scaffolds in the past decades, introducing novel synthetic procedures has been an active research field of organic chemistry for well over a century and will be useful in creating new therapeutic agents. This review summarizes the pharmacological significance of spiroindole and spirooxindole scaffolds and highlights the latest strategies for their synthesis, focusing particularly on the past 2 years with typical examples. The spiroindole and spirooxindoles in this review are divided by the type and ring size of the spirocycle that is fused to indole or oxindole. Summarizing these procedures will be very beneficial for discovering novel therapeutic candidate molecules.
Collapse
Affiliation(s)
- Shima Nasri
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.
| | - Faezeh Mirzaei
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
5
|
Abstract
This review summaries recent synthetic developments towards spirocyclic oxindoles and applications as valuable medicinal and synthetic targets.
Collapse
Affiliation(s)
- Alexander J. Boddy
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| | - James A. Bull
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| |
Collapse
|
6
|
Li NK, Sun BB, Chen JB, Yang HD, Wang BL, Yu JQ, Wang XW, Wang Z. Box-copper catalyzed asymmetric inverse-electron-demand oxa-hetero-Diels–Alder reaction for efficient synthesis of spiro pyranyl-oxindole derivatives. Org Chem Front 2021. [DOI: 10.1039/d0qo01407a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A chiral Box/Cu catalyzed asymmetric IEDDA reaction between isatin-derived β,γ-unsaturated α-ketoesters and electron-rich olefins was developed, which provided chiral spiro oxindole-pyrans in excellent yields with excellent stereoselectivities.
Collapse
Affiliation(s)
- Nai-Kai Li
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science Soochow University
- Suzhou 215123
- China
| | - Bing-Bing Sun
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science Soochow University
- Suzhou 215123
- China
| | - Jun-Bo Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science Soochow University
- Suzhou 215123
- China
| | - Hao-Di Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science Soochow University
- Suzhou 215123
- China
| | - Bai-Lin Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science Soochow University
- Suzhou 215123
- China
| | - Jie-Qiang Yu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science Soochow University
- Suzhou 215123
- China
| | - Xing-Wang Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science Soochow University
- Suzhou 215123
- China
| | - Zheng Wang
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
| |
Collapse
|
7
|
Ratushnyy M, Kvasovs N, Sarkar S, Gevorgyan V. Visible‐Light‐Induced Palladium‐Catalyzed Generation of Aryl Radicals from Aryl Triflates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915962] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Maxim Ratushnyy
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor Street Chicago IL 60607-7061 USA
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell, BSB13 Richardson TX 75080 USA
| | - Nikita Kvasovs
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor Street Chicago IL 60607-7061 USA
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell, BSB13 Richardson TX 75080 USA
| | - Sumon Sarkar
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor Street Chicago IL 60607-7061 USA
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell, BSB13 Richardson TX 75080 USA
| | - Vladimir Gevorgyan
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor Street Chicago IL 60607-7061 USA
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell, BSB13 Richardson TX 75080 USA
| |
Collapse
|
8
|
Ratushnyy M, Kvasovs N, Sarkar S, Gevorgyan V. Visible-Light-Induced Palladium-Catalyzed Generation of Aryl Radicals from Aryl Triflates. Angew Chem Int Ed Engl 2020; 59:10316-10320. [PMID: 32155303 PMCID: PMC7446712 DOI: 10.1002/anie.201915962] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Indexed: 12/31/2022]
Abstract
A mild visible-light-induced Pd-catalyzed intramolecular C-H arylation of amides is reported. The method operates by cleavage of a C(sp2 )-O bond, leading to hybrid aryl Pd-radical intermediates. The following 1,5-hydrogen atom translocation, intramolecular cyclization, and rearomatization steps lead to valuable oxindole and isoindoline-1-one motifs. Notably, this method provides access to products with readily enolizable functional groups that are incompatible with traditional Pd-catalyzed conditions.
Collapse
Affiliation(s)
- Maxim Ratushnyy
- Department of Chemistry,University of Illinois at Chicago 845 W. Taylor Street, Chicago, IL 60607-7061 (USA)
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell, BSB13, Richardson, TX 75080 (USA)
| | - Nikita Kvasovs
- Department of Chemistry,University of Illinois at Chicago 845 W. Taylor Street, Chicago, IL 60607-7061 (USA)
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell, BSB13, Richardson, TX 75080 (USA)
| | - Sumon Sarkar
- Department of Chemistry,University of Illinois at Chicago 845 W. Taylor Street, Chicago, IL 60607-7061 (USA)
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell, BSB13, Richardson, TX 75080 (USA)
| | - Vladimir Gevorgyan
- Department of Chemistry,University of Illinois at Chicago 845 W. Taylor Street, Chicago, IL 60607-7061 (USA)
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell, BSB13, Richardson, TX 75080 (USA)
| |
Collapse
|
9
|
Jiang Y, Yu SW, Yang Y, Liu YL, Xu XY, Zhang XM, Yuan WC. Facile synthesis of fused polycyclic compounds via intramolecular oxidative cyclization/aromatization of β-tetralone or β-tetralone oximes. Org Biomol Chem 2018; 16:9003-9010. [PMID: 30422145 DOI: 10.1039/c8ob02031k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A mild and efficient NBS promoted intramolecular oxidative cyclization/aromatization of β-tetralone oximes has been explored. Under the optimized conditions, fused α-carbolines containing pentacyclic rings were obtained in moderate to good yields. Furthermore, various benzo[5,6]chromeno[2,3-b]indoles were successfully synthesized in moderate yields from β-tetralones using slightly modified conditions. We proposed a possible reaction pathway based on the experimental results.
Collapse
Affiliation(s)
- Yan Jiang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | | | | | | | | | | | | |
Collapse
|