1
|
Miao H, Yu R, Zheng J, Shang J, Zhang L, Ma M, Yang Y. Ph 3PO-Modulated Kdo Glycosidation for Stereoselective Synthesis of β-Kdo-Containing Disaccharides. Org Lett 2024; 26:10634-10639. [PMID: 39614817 DOI: 10.1021/acs.orglett.4c04193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
A Ph3PO-modulated β-selective Kdo glycosidation approach is developed for the stereoselective synthesis of β-Kdo glycosides. With the readily available per-O-acetylated Kdo ynenoate as the donor, the glycosylation with a series of alcohols in the presence of Ph3PAuOTf and Ph3PO in toluene at low temperatures afforded the desired Kdo glycosides with good to excellent β-selectivities. Furthermore, the Ph3PO-modulated approach was effectively applied to the synthesis of β-(2→4)- and β-(2→8)-linked Kdo-Kdo disaccharides for further biological studies.
Collapse
Affiliation(s)
- He Miao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Rurong Yu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jibin Zheng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jintao Shang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lvfeng Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Minghui Ma
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - You Yang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
2
|
Liu R, Hua Q, Lou Q, Wang J, Li X, Ma Z, Yang Y. NIS/TMSOTf-Promoted Glycosidation of Glycosyl ortho-Hexynylbenzoates for Versatile Synthesis of O-Glycosides and Nucleosides. J Org Chem 2021; 86:4763-4778. [PMID: 33689328 DOI: 10.1021/acs.joc.1c00151] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glycosidation plays a pivotal role in the synthesis of O-glycosides and nucleosides that mediate a diverse range of biological processes. However, efficient glycosidation approach for the synthesis of both O-glycosides and nucleosides remains challenging in terms of glycosidation yields, mild reaction conditions, readily available glycosyl donors, and cheap promoters. Here, we report a versatile N-iodosuccinimide/trimethylsilyl triflate (NIS/TMSOTf)-promoted glycosidation approach with glycosyl ortho-hexynylbenzoates as donors for the highly efficient synthesis of O-glycosides and nucleosides. The glycosidation approach highlights the merits of mild reaction conditions, cheap promoters, extremely wide substrate scope, and good to excellent yields. Notably, the glycosidation approach performs very well in the construction of a series of challenging O- and N-glycosidic linkages. The glycosidation approach is then applied to the efficient synthesis of oligosaccharides via the one-pot strategy and the stepwise strategy. On the basis of the isolation and characterization of the departure species derived from the leaving group, a plausible mechanism of NIS/TMSOTf-promoted glycosidation of glycosyl ortho-hexynylbenzoates is proposed.
Collapse
Affiliation(s)
- Rongkun Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qingting Hua
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qixin Lou
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiazhe Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiaona Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhi Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - You Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
3
|
Zhang L, Wang X, Hua Q, Wang J, Liu J, Yang Y. Synthesis and immunomodulatory activity of the sulfated tetrasaccharide motif of type B ulvanobiuronic acid 3-sulfate. Org Biomol Chem 2020; 18:7932-7935. [PMID: 33001123 DOI: 10.1039/d0ob01852j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ulvan is a sulfated polysaccharide from green algae with potent antitumor, antiviral, and immunomodulatory activities. However, no chemical synthesis of ulvan saccharides has been reported to date. In this paper, we performed the first efficient synthesis of the unique sulfated tetrasaccharide motif of type B ulvanobiuronic acid 3-sulfate. Based on the gold(i)-catalyzed glycosylation with glycosyl ynenoates as donors, efficient construction of the challenging α-(1 → 4)-glycosidic bonds between iduronic acid and rhamnose building blocks was achieved to afford the tetrasaccharide skeleton in a stereospecific manner. The synthetic sulfated tetrasaccharide was found to significantly improve the phagocytic activity of macrophage RAW264.7 cells.
Collapse
Affiliation(s)
- Liangliang Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | | | | | | | | | | |
Collapse
|
4
|
Li R, Yu H, Chen X. Recent progress in chemical synthesis of bacterial surface glycans. Curr Opin Chem Biol 2020; 58:121-136. [PMID: 32920523 DOI: 10.1016/j.cbpa.2020.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022]
Abstract
With the continuing advancement of carbohydrate chemical synthesis, bacterial glycomes have become increasingly attractive and accessible synthetic targets. Although bacteria also produce carbohydrate-containing secondary metabolites, our review here will cover recent chemical synthetic efforts on bacterial surface glycans. The obtained compounds are excellent candidates for the development of improved structurally defined glycoconjugate vaccines to combat bacterial infections. They are also important probes for investigating glycan-protein interactions. Glycosylation strategies applied for the formation of some challenging glycosidic bonds of various uncommon sugars in a number of recently synthesized bacterial surface glycans are highlighted.
Collapse
Affiliation(s)
- Riyao Li
- Department of Chemistry, University of California Davis, Davis, CA, USA
| | - Hai Yu
- Department of Chemistry, University of California Davis, Davis, CA, USA
| | - Xi Chen
- Department of Chemistry, University of California Davis, Davis, CA, USA.
| |
Collapse
|
5
|
Lou Q, Hua Q, Zhang L, Yang Y. Dimethylformamide-Modulated Kdo Glycosylation for Stereoselective Synthesis of α-Kdo Glycosides. Org Lett 2020; 22:981-985. [PMID: 31917587 DOI: 10.1021/acs.orglett.9b04509] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A simple and direct DMF-modulated α-selective Kdo glycosylation approach for the stereoselective synthesis of the α-linked Kdo glycosides is developed. Glycosylation of the readily available peracetylated Kdo ortho-hexynylbenzoate with common acceptor alcohols using SPhosAuNTf2 as a promoter and DMF as a modulating molecule afforded a range of Kdo glycosides with good α-selectivities. Furthermore, the present method is effectively applied in the latent-active synthesis of the α-linked di-Kdo glycoside bearing a linker at the reducing end. Finally, the first observation of a Kdo imidinium ion in the low-temperature NMR provides evidence for the plausible mechanism of the DMF-modulated α-selective Kdo glycosylation.
Collapse
Affiliation(s)
- Qixin Lou
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Qingting Hua
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Liangliang Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - You Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| |
Collapse
|