1
|
Sreedharan R, Gandhi T. Masters of Mediation: MN(SiMe 3) 2 in Functionalization of C(sp 3)-H Latent Nucleophiles. Chemistry 2024; 30:e202400435. [PMID: 38497321 DOI: 10.1002/chem.202400435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/19/2024]
Abstract
Organoalkali compounds have undergone a far-reaching transformation being a coupling partner to a mediator in unusual organic conversions which finds its spot in the field of sustainable synthesis. Transition-metal catalysis has always been the priority in C(sp3)-H bond functionalization, however alternatively, in recent times this has been seriously challenged by earth-abundant alkali metals and their complexes arriving at new sustainable organometallic reagents. In this line, the importance of MN(SiMe3)2 (M=Li, Na, K & Cs) reagent revived in C(sp3)-H bond functionalization over recent years in organic synthesis is showcased in this minireview. MN(SiMe3)2 reagent with higher reactivity, enhanced stability, and bespoke cation-π interaction have shown eye-opening mediated processes such as C(sp3)-C(sp3) cross-coupling, radical-radical cross-coupling, aminobenzylation, annulation, aroylation, and other transformations to utilize readily available petrochemical feedstocks. This article also emphasizes the unusual reactivity of MN(SiMe3)2 reagent in unreactive and robust C-X (X=O, N, F, C) bond cleavage reactions that occurred alongside the C(sp3)-H bond functionalization. Overall, this review encourages the community to exploit the untapped potential of MN(SiMe3)2 reagent and also inspires them to take up this subject to even greater heights.
Collapse
Affiliation(s)
- Ramdas Sreedharan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Thirumanavelan Gandhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
2
|
Yadav M, Singh Jat R, Kumari S, Vijaya Babu P, Roy P, Bhanuchandra M. Transition-metal-free synthesis of 2-arylphenol via SNAr reaction of dibenzothiophene dioxide with KOH. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
3
|
Pankhade YA, Pandey R, Fatma S, Ahmad F, Anand RV. TfOH-Catalyzed Intramolecular Annulation of 2-(Aryl)-Phenyl-Substituted p-Quinone Methides under Continuous Flow: Total Syntheses of Selaginpulvilin I and Isoselagintamarlin A. J Org Chem 2022; 87:3363-3377. [PMID: 35107013 DOI: 10.1021/acs.joc.1c02980] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this article, we describe a convenient method to access 9-aryl fluorene derivatives through a TfOH-catalyzed intramolecular 1,6-conjugate arylation of 2-(aryl)-phenyl-substituted p-quinone methides (QMs) under continuous flow using the microreaction technique. This method was found to be very effective for most of the p-QMs, and the corresponding 9-aryl fluorene derivatives were obtained in moderate to excellent yields. Moreover, this protocol was further elaborated to the first total syntheses of selaginpulvilin I and isoselagintamarlin A.
Collapse
Affiliation(s)
- Yogesh A Pankhade
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli, Punjab 140306, India
| | - Rajat Pandey
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli, Punjab 140306, India
| | - Shaheen Fatma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli, Punjab 140306, India
| | - Feroz Ahmad
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli, Punjab 140306, India
| | - Ramasamy Vijaya Anand
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli, Punjab 140306, India
| |
Collapse
|
4
|
Furukawa T, Yanagi T, Kaga A, Saito H, Yorimitsu H. Construction of 5
H
‐Dibenzo[
c
,
e
]azepine Framework from Dibenzothiophene Dioxides and
N
‐Benzylimines through S
N
Ar Reactions. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tomoki Furukawa
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku, Kyoto 606-8502 Japan
| | - Tomoyuki Yanagi
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku, Kyoto 606-8502 Japan
| | - Atsushi Kaga
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku, Kyoto 606-8502 Japan
| | - Hayate Saito
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku, Kyoto 606-8502 Japan
| | - Hideki Yorimitsu
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku, Kyoto 606-8502 Japan
| |
Collapse
|
5
|
Huang J. Organic Transformation of Benzothiophenes by C−S Bond Cleavage Beyond Reductive Desulfurization. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jirong Huang
- School of Pharmacy Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 Hubei Province People's Republic of China
| |
Collapse
|
6
|
Kaga A, Iida H, Tsuchiya S, Saito H, Nakano K, Yorimitsu H. Aromatic Metamorphosis of Thiophenes by Means of Desulfurative Dilithiation. Chemistry 2021; 27:4567-4572. [PMID: 33349986 DOI: 10.1002/chem.202005223] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/16/2020] [Indexed: 12/24/2022]
Abstract
A new mode of aromatic metamorphosis has been developed, which allows thiophenes and their benzo-fused derivatives to be converted to a variety of exotic heteroles. This transformation involves 1) the efficient generation of key 1,4-dianions by means of desulfurative dilithiation with lithium powder and 2) the subsequent trapping of the dianions with heteroatom electrophiles in a one-pot manner. Via the desulfurative dilithiation, the sulfur atoms of thiophenes are replaced also with a carbon-carbon double bond or a 1,2-phenylene for the construction of benzene rings.
Collapse
Affiliation(s)
- Atsushi Kaga
- Department of Chemistry, Graduate School of Science, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hirokazu Iida
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Shun Tsuchiya
- Department of Chemistry, Graduate School of Science, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hayate Saito
- Department of Chemistry, Graduate School of Science, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Koji Nakano
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
7
|
Yanagi T, Tanaka T, Yorimitsu H. Asymmetric systematic synthesis, structures, and (chir)optical properties of a series of dihetero[8]helicenes. Chem Sci 2021; 12:2784-2793. [PMID: 34164042 PMCID: PMC8179410 DOI: 10.1039/d1sc00044f] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/28/2021] [Indexed: 01/22/2023] Open
Abstract
A series of dihetero[8]helicenes have been systematically synthesized in enantiomerically enriched forms by utilizing the characteristic transformations of the organosulfur functionality. The synthetic route begins with assembling a ternaphthyl common synthetic intermediate from 2-naphthol and bissulfinylnaphthalene through an extended Pummerer reaction followed by facile multi-gram-scale resolution. The subsequent cyclization reactions into dioxa- and dithia[8]helicenes take place with excellent axial-to-helical chirality conversion. Dithia[8]helicene is further transformed into the nitrogen and the carbon analogs by replacing the two endocyclic sulfur atoms via SNAr-based skeletal reconstruction. The efficient systematic synthesis has enabled comprehensive evaluation of physical properties, which has clarified the effect of the endocyclic atoms on their structures and (chir)optical properties as well as the unexpected conformational stability of the common helical framework.
Collapse
Affiliation(s)
- Tomoyuki Yanagi
- Department of Chemistry, Graduate School of Science, Kyoto University Japan
| | - Takayuki Tanaka
- Department of Chemistry, Graduate School of Science, Kyoto University Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University Japan
| |
Collapse
|
8
|
Panda S, Jat RS, Fayaz A, Saha J, Thirumoorthi R, Roy TK, Bhanuchandra M. Conjugated small organic molecules: synthesis and characterization of 4-arylpyrazole-decorated dibenzothiophenes. NEW J CHEM 2020. [DOI: 10.1039/d0nj01887b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
4-Arylpyrazole-decorated dibenzothiophenes have been synthesized.
Collapse
Affiliation(s)
- Satyajit Panda
- Department of Chemistry
- School of Chemical Sciences and Pharmacy
- Central University of Rajasthan
- Ajmer
- India
| | - Ram Singh Jat
- Department of Chemistry
- School of Chemical Sciences and Pharmacy
- Central University of Rajasthan
- Ajmer
- India
| | - Amir Fayaz
- Department of Chemistry
- School of Chemical Sciences and Pharmacy
- Central University of Rajasthan
- Ajmer
- India
| | - Jony Saha
- Department of Chemistry
- School of Chemical Sciences and Pharmacy
- Central University of Rajasthan
- Ajmer
- India
| | - Ramalingam Thirumoorthi
- Department of Chemistry
- School of Chemical Sciences and Pharmacy
- Central University of Rajasthan
- Ajmer
- India
| | - Tapta Kanchan Roy
- Department of Chemistry
- School of Chemical Sciences and Pharmacy
- Central University of Rajasthan
- Ajmer
- India
| | - M. Bhanuchandra
- Department of Chemistry
- School of Chemical Sciences and Pharmacy
- Central University of Rajasthan
- Ajmer
- India
| |
Collapse
|
9
|
Okamoto N, Sueda T, Minami H, Yanada R. Inter- and Intramolecular Alkyne-Carbonyl Metathesis/1,6-Addition/Oxidative Aromatization Tandem Reactions between 1,6-Diynes and Aldehydes. Org Lett 2019; 21:8847-8851. [PMID: 31633934 DOI: 10.1021/acs.orglett.9b03494] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report an efficient synthetic route to 9-arylfluorenes and biaryl compounds from 1,6-diynes and aldehydes via inter- and intramolecular alkyne-carbonyl metathesis/1,6-addition/oxidative aromatization reactions. These tandem reactions are initiated by a BF3·Et2O-promoted tandem inter- and intramolecular alkyne-carbonyl metathesis of 1,6-diynes with carbonyl compounds followed by an In(OTf)3-catalyzed 1,6-addition/oxidative aromatization with iodobenzene diacetate.
Collapse
Affiliation(s)
- Noriko Okamoto
- Faculty of Pharmaceutical Sciences , Hiroshima International University , 5-1-1 Hirokoshingai , Kure , Hiroshima 737-0112 , Japan
| | - Takuya Sueda
- Faculty of Pharmaceutical Sciences , Hiroshima International University , 5-1-1 Hirokoshingai , Kure , Hiroshima 737-0112 , Japan
| | - Hideki Minami
- Faculty of Pharmaceutical Sciences , Hiroshima International University , 5-1-1 Hirokoshingai , Kure , Hiroshima 737-0112 , Japan
| | - Reiko Yanada
- Faculty of Pharmaceutical Sciences , Hiroshima International University , 5-1-1 Hirokoshingai , Kure , Hiroshima 737-0112 , Japan
| |
Collapse
|
10
|
Kaga A, Nogi K, Yorimitsu H. Synthesis of N-Alkyl and N-H-Carbazoles through S N Ar-Based Aminations of Dibenzothiophene Dioxides. Chemistry 2019; 25:14780-14784. [PMID: 31553094 DOI: 10.1002/chem.201903916] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/24/2019] [Indexed: 12/24/2022]
Abstract
Alkyl amines have become available for the synthesis of diverse N-alkyl carbazoles through twofold SN Ar aminations of dibenzothiophene dioxides by using alkali metal bases. Of particular importance is the choice of counter cations on alkali metal bases, that is, i) the use of Li base for the efficient intermolecular reaction and ii) the sequential addition of heavier alkali metal bases (Na, K, or Cs) to promote intramolecular cyclization in a one-pot manner. This protocol also enables the cascade synthesis of N-H-carbazoles by using 2-phenylethylamine by removal of the 2-phenethyl group from N-(2-phenethyl) carbazoles in a single operation.
Collapse
Affiliation(s)
- Atsushi Kaga
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Keisuke Nogi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
11
|
Mattalia JM, Nava P. C-C Bond Breaking in Addition-Elimination Reactions on Nitriles. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Paola Nava
- CNRS, Centrale Marseille, iSm2, Marseille; Aix-Marseille Univ; France
| |
Collapse
|