1
|
Nandwana NK, Patel OPS, Mehra MK, Kumar A, Salvino JM. Recent Advances in Metal-Catalyzed Approaches for the Synthesis of Quinazoline Derivatives. Molecules 2024; 29:2353. [PMID: 38792215 PMCID: PMC11124210 DOI: 10.3390/molecules29102353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Quinazolines are an important class of heterocyclic compounds that have proven their significance, especially in the field of organic synthesis and medicinal chemistry because of their wide range of biological and pharmacological properties. Thus, numerous synthetic methods have been developed for the synthesis of quinazolines and their derivatives. This review article briefly outlines the new synthetic methods for compounds containing the quinazoline scaffold employing transition metal-catalyzed reactions.
Collapse
Affiliation(s)
- Nitesh K. Nandwana
- Medicinal Chemistry and Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Om P. S. Patel
- Department of Technical Education, Government Polytechnic Naraini, Banda 210001, India
| | - Manish K. Mehra
- Medicinal Chemistry and Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, India
| | - Joseph M. Salvino
- Medicinal Chemistry and Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Sawant DM, Joshi G, Ansari AJ. Nitrene-transfer from azides to isocyanides: Unveiling its versatility as a promising building block for the synthesis of bioactive heterocycles. iScience 2024; 27:109311. [PMID: 38510111 PMCID: PMC10951658 DOI: 10.1016/j.isci.2024.109311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Cross-coupling azide and isocyanide have recently gained recognition as ideal methods for efficiently synthesizing asymmetric carbodiimides. This reaction exhibits high reaction rates, efficiency, and favorable atom/step/redox economy. It enables the nitrene-transfer process, facilitating the formation of C-N bonds and providing a direct and cost-effective synthetic strategy for generating diverse carbodiimides. These carbodiimides are highly reactive compounds that can undergo in-situ transformations into various functional groups and organic compounds, including heterocycles. Developing one-pot and tandem processes in this field has significantly contributed to advancements in organic chemistry. Moreover, the demonstrated utility of these architectural motifs extends to areas such as chemical biology and medicinal chemistry, further highlighting their potential in various scientific applications.
Collapse
Affiliation(s)
- Devesh M. Sawant
- Department of Pharmacy, Central University of Rajasthan, Ajmer 305817, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar 246174, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Arshad J. Ansari
- Department of Pharmacy, Central University of Rajasthan, Ajmer 305817, India
| |
Collapse
|
3
|
Magwaza NM, More GK, Gildenhuys S, Mphahlele MJ. In Vitro α-Glucosidase and α-Amylase Inhibition, Cytotoxicity and Free Radical Scavenging Profiling of the 6-Halogeno and Mixed 6,8-Dihalogenated 2-Aryl-4-methyl-1,2-dihydroquinazoline 3-Oxides. Antioxidants (Basel) 2023; 12:1971. [PMID: 38001824 PMCID: PMC10669220 DOI: 10.3390/antiox12111971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Series of the 6-bromo/iodo substituted 2-aryl-4-methyl-1,2-dihydroquinazoline-3-oxides and their mixed 6,8-dihalogenated (Br/I and I/Br) derivatives were evaluated for inhibitory properties against α-glucosidase and/or α-amylase activities and for cytotoxicity against breast (MCF-7) and lung (A549) cancer cell lines. The 6-bromo-2-phenyl substituted 3a and its corresponding 6-bromo-8-iodo-2-phenyl-substituted derivative 3i exhibited dual activity against α-glucosidase (IC50 = 1.08 ± 0.02 μM and 1.01 ± 0.05 μM, respectively) and α-amylase (IC50 = 5.33 ± 0.01 μM and 1.18 ± 0.06 μM, respectively) compared to acarbose (IC50 = 4.40 ± 0.05 μM and 2.92 ± 0.02 μM, respectively). The 6-iodo-2-(4-fluorophenyl)-substituted derivative 3f, on the other hand, exhibited strong activity against α-amylase and significant inhibitory effect against α-glucosidase with IC50 values of 0.64 ± 0.01 μM and 9.27 ± 0.02 μM, respectively. Compounds 3c, 3l and 3p exhibited the highest activity against α-glucosidase with IC50 values of 1.04 ± 0.03, 0.92 ± 0.01 and 0.78 ± 0.05 μM, respectively. Moderate cytotoxicity against the MCF-7 and A549 cell lines was observed for these compounds compared to the anticancer drugs doxorubicin (IC50 = 0.25 ± 0.05 μM and 0.36 ± 0.07 μM, respectively) and gefitinib (IC50 = 0.19 ± 0.04 μM and 0.25 ± 0.03 μM, respectively), and their IC50 values are in the range of 10.38 ± 0.08-25.48 ± 0.08 μM and 11.39 ± 0.12-20.00 ± 0.05 μM, respectively. The test compounds generally exhibited moderate to strong antioxidant capabilities, as demonstrated via robust free radical scavenging activity assays, viz., DPPH and NO. The potential of selected derivatives to inhibit superoxide dismutase (SOD) was also investigated via enzymatic assay in vitro. Molecular docking revealed the N-O moiety as essential to facilitate electrostatic interactions of the test compounds with the protein residues in the active site of α-glucosidase and α-amylase. The presence of bromine and/or iodine atoms resulted in increased hydrophobic (alkyl and/or π-alkyl) interactions and therefore increased inhibitory effect against both enzymes.
Collapse
Affiliation(s)
- Nontokozo M. Magwaza
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa;
| | - Garland K. More
- College of Agriculture and Environmental Sciences Laboratories, University of South Africa, Private Bag X06, Florida 1710, South Africa;
| | - Samantha Gildenhuys
- Department of Life & Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa;
| | - Malose J. Mphahlele
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa;
| |
Collapse
|
4
|
Zhong CR, Zhang YH, Yao G, Zhu HL, Hu YD, Zeng ZG, Liao CZ, He HT, Luo YT, Xiong J. Synthesis of Imidazo[1,2- a]pyridine-Fused 1,3-Benzodiazepine Derivatives with Anticancer Activity via a One-Pot Cascade GBB-3CR/Pd(II)-Catalyzed Azide-Isocyanide Coupling/Cyclization Process. J Org Chem 2023; 88:13125-13134. [PMID: 37616489 DOI: 10.1021/acs.joc.3c01341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
A new one-pot synthesis of imidazo[1,2-a]pyridine-fused 1,3-benzodiazepine derivatives via a sequential GBB-3CR/Pd(II)-catalyzed azide-isocyanide coupling/cyclization process was developed. The Groebke-Blackburn-Bienaymé three-component reactions (GBB-3CR) of 2-aminopyridine, 2-azidobenzaldehydes, and isocyanides in the presence of a catalytic amount of p-toluenesulfonic acid gave azide intermediates without separation. The reaction was followed by using another molecule of isocyanides to produce imidazo[1,2-a]pyridine-fused 1,3-benzodiazepine derivatives in good yields by the Pd(II)-catalyzed azide-isocyanide coupling/cyclization reaction. The synthetic approach produces novel nitrogen-fused polycyclic heterocycles under mild reaction conditions. The preliminary biological evaluation demonstrated that compound 6a inhibited glioma cells efficiently, suggesting potentially broad applications of the approach for synthesis and medicinal chemistry.
Collapse
Affiliation(s)
- Cheng-Ran Zhong
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100 Hubei, P. R. China
| | - Yang-Hong Zhang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100 Hubei, P. R. China
| | - Gang Yao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100 Hubei, P. R. China
| | - Hai-Li Zhu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100 Hubei, P. R. China
| | - Yin-Di Hu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100 Hubei, P. R. China
| | - Zhi-Gang Zeng
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100 Hubei, P. R. China
| | - Chang-Zhou Liao
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100 Hubei, P. R. China
| | - Hui-Ting He
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100 Hubei, P. R. China
| | - Ya-Ting Luo
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100 Hubei, P. R. China
| | - Jun Xiong
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100 Hubei, P. R. China
| |
Collapse
|
5
|
Mphahlele MJ. A Review on the Synthesis and Chemical Transformation of Quinazoline 3-Oxides. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227985. [PMID: 36432084 PMCID: PMC9697966 DOI: 10.3390/molecules27227985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
The synthesis of quinazoline 3-oxides and their derivatives has attracted considerable attention due to their reactivity as intermediates in the synthesis of quinazoline analogues and their ring-expanded derivatives. Despite this, there is no comprehensive review dedicated to the synthesis and chemical transformation of these biologically relevant azaaromatic oxides. This review aims to provide an up-to-date record of the synthesis of quinazoline 3-oxides and their chemical transformation. It is hoped that this information will help medicinal chemistry researchers to design and synthesize new derivatives or analogues to treat various diseases.
Collapse
Affiliation(s)
- Malose J Mphahlele
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa
| |
Collapse
|
6
|
Roose TR, Verdoorn DS, Mampuys P, Ruijter E, Maes BUW, Orru RVA. Transition metal-catalysed carbene- and nitrene transfer to carbon monoxide and isocyanides. Chem Soc Rev 2022; 51:5842-5877. [PMID: 35748338 PMCID: PMC9580617 DOI: 10.1039/d1cs00305d] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Indexed: 11/21/2022]
Abstract
Transition metal-catalysed carbene- and nitrene transfer to the C1-building blocks carbon monoxide and isocyanides provides heteroallenes (i.e. ketenes, isocyanates, ketenimines and carbodiimides). These are versatile and reactive compounds allowing in situ transformation towards numerous functional groups and organic compounds, including heterocycles. Both one-pot and tandem processes have been developed providing valuable synthetic methods for the organic chemistry toolbox. This review discusses all known transition metal-catalysed carbene- and nitrene transfer reactions towards carbon monoxide and isocyanides and in situ transformation of the heteroallenes hereby obtained, with a special focus on the general mechanistic considerations.
Collapse
Affiliation(s)
- T R Roose
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - D S Verdoorn
- Organic Chemistry, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167RD Geleen, The Netherlands.
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - P Mampuys
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - E Ruijter
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - B U W Maes
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - R V A Orru
- Organic Chemistry, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167RD Geleen, The Netherlands.
| |
Collapse
|
7
|
Zhang Z, Tan P, Chang W, Zhang Z. Transition‐Metal‐Catalyzed Cross‐Coupling and Sequential Reactions of Azides with Isocyanides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Zhen Zhang
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Pengpeng Tan
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Wenxu Chang
- College of Science China Agricultural University Beijing 100193 People's Republic of China
| | - Zhenhua Zhang
- College of Science China Agricultural University Beijing 100193 People's Republic of China
| |
Collapse
|
8
|
Mphahlele MJ, Onwu EE, Agbo EN, Maluleka MM, More GK, Choong YS. Synthesis, in vitro and in silico enzyme (COX-1/2 & LOX-5), free radical scavenging and cytotoxicity profiling of the 2,4-dicarbo substituted quinazoline 3-oxides. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02811-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Collet JW, Roose TR, Weijers B, Maes BUW, Ruijter E, Orru RVA. Recent Advances in Palladium-Catalyzed Isocyanide Insertions. Molecules 2020; 25:E4906. [PMID: 33114013 PMCID: PMC7660339 DOI: 10.3390/molecules25214906] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Isocyanides have long been known as versatile chemical reagents in organic synthesis. Their ambivalent nature also allows them to function as a CO-substitute in palladium-catalyzed cross couplings. Over the past decades, isocyanides have emerged as practical and versatile C1 building blocks, whose inherent N-substitution allows for the rapid incorporation of nitrogeneous fragments in a wide variety of products. Recent developments in palladium catalyzed isocyanide insertion reactions have significantly expanded the scope and applicability of these imidoylative cross-couplings. This review highlights the advances made in this field over the past eight years.
Collapse
Affiliation(s)
- Jurriën W. Collet
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Thomas R. Roose
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
| | - Bram Weijers
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
| | - Bert U. W. Maes
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Eelco Ruijter
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
| | - Romano V. A. Orru
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
- Organic Chemistry, Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Urmonderlaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
10
|
Mou J, Chen N, Zhao Y, Qi H, Meng S, Xiang R, Pei D. An Aqueous Facile Synthesis of 2,3-Dihydroquinazolin-4(1H)-One Derivatives by Reverse Zinc Oxide Micelles as Nanoreactor. Front Chem 2020; 8:239. [PMID: 32391312 PMCID: PMC7193868 DOI: 10.3389/fchem.2020.00239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/12/2020] [Indexed: 12/02/2022] Open
Abstract
A green synthetic protocol has been developed for the efficient preparation of 2,3-dihydroquinazolin−4(1H)-one derivatives with excellent yield in aqueous media. Reverse zinc oxide micelles catalyzed the reactions efficiently and selectively as the hallow nanoreactor. Moreover, the catalyst was reusable without significant loss of catalytic efficiency. The notable advantages of the procedure are high yields and mild reaction conditions, simple operation, nonchromatographic purification, environmentally friendly and good versatile substrates.
Collapse
Affiliation(s)
- Jie Mou
- Jiangsu Key Laboratory of New drug and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.,School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ninghai Chen
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yu Zhao
- Jiangsu Key Laboratory of New drug and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Hao Qi
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Sihan Meng
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Rui Xiang
- Jiangsu Key Laboratory of New drug and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Dongsheng Pei
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
11
|
Wei WM, Dong FQ, Zheng RH, Yang X, Fang WJ, Qin YD. Theoretical study of the mechanism of Pd(II)-catalyzed nucleophilic addition initiated by aminopalladation. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.112638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Jatangi N, Palakodety RK. I 2-Catalyzed oxidative synthesis of N,4-disubstituted quinazolines and quinazoline oxides. Org Biomol Chem 2019; 17:3714-3717. [PMID: 30882837 DOI: 10.1039/c9ob00349e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An easy and efficient approach to the synthesis of N,4-disubstituted quinazoline-2-amine and oxides is described. This transformation proceeds smoothly in the presence of molecular iodine. The metal-free protocol presented here is insensitive to air moisture and operationally simple. This versatile and synthetic methodology is broadly applicable to a variety of N,4-disubstituted quinazoline-2-amines and oxides, which are synthesized in good to excellent yields starting from readily available inexpensive precursors.
Collapse
Affiliation(s)
- Nagesh Jatangi
- Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
| | | |
Collapse
|