1
|
Rahmat E, Yu JS, Lee BS, Lee J, Ban Y, Yim NH, Park JH, Kang CH, Kim KH, Kang Y. Secondary metabolites and transcriptomic analysis of novel pulcherrimin producer Metschnikowia persimmonesis KIOM G15050: A potent and safe food biocontrol agent. Heliyon 2024; 10:e28464. [PMID: 38571591 PMCID: PMC10988027 DOI: 10.1016/j.heliyon.2024.e28464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
Metschnikowia persimmonesis, a novel endophytic yeast strain isolated from Diospyros kaki calyx, possesses strong antimicrobial activity. We investigated its potential use as an environmentally safe food biocontrol agent through genomics, transcriptomics, and metabolomics. Secondary metabolites were isolated from M. persimmonesis, followed by chemical structure elucidation, PUL gene cluster identification, and RNA sequencing. Pulcherrimin was isolated using 2 M NaOH, its structure was confirmed, and the yield was quantified. Biocontrol efficacy of M. persimmonesis on persimmon fruits and calyx was evaluated by assessing lesion diameter and disease incidence. Following compounds were isolated from M. persimmonesis co-culture with Botrytis cinerea and Fusarium oxysporum: fusaric acid, benzoic acid, benzeneacetic acid, 4-hydroxybenzeneacetic acid, 4-(-2-hydoxyethyl)-benzoic acid, cyclo (Leu-Leu), benzenemethanol, 4-hydroxy-benzaldehide, 2-hydroxy-4-methoxy-benzoic acid, 4-hydroxy-benzoic acid, lumichrome, heptadecanoic acid, and nonadecanoic acid. Exposing M. persimmonesis to different growth media conditions (with or without sugar) resulted in the isolation of five compounds: Tyrosol, Cyclo (Pro-Val), cyclo(L-Pro-L-Tyr), cyclo(Leu-Leu), and cyclo(l-tyrosilylicine). Differentially expressed gene analysis revealed 3264 genes that were significantly expressed (fold change ≥2 and p-value ≤0.05) during M. persimmonesis growth in different media, of which only 270 (8.27%) showed altered expression in all sample combinations with Luria-Bertani Agar as control. Minimal media with ferric ions and tween-80 triggered the most gene expression changes, with the highest levels of PUL gene expression and pulcherrimin yield (262.166 mg/L) among all media treatments. M. persimmonesis also produced a higher amount of pulcherrimin (209.733 mg/L) than Metschnikowia pulcherrima (152.8 mg/L). M. persimmonesis inhibited the growth of Fusarium oxysporum in persimmon fruit and calyx. Toxicity evaluation of M. persimmonesis extracts showed no harmful effects on the liver and mitochondria of zebrafish, and no potential risk of cardiotoxicity in hERG-HEK293 cell lines. Thus, M. persimmonesis can be commercialized as a potent and safe biocontrol agent for preserving food products.
Collapse
Affiliation(s)
- Endang Rahmat
- Biotechnology Department, Faculty of Engineering, Bina Nusantara University, Jakarta, 11480, Indonesia
| | - Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul, 05006, Republic of Korea
| | - Bum Soo Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jiyoung Lee
- University of Science & Technology (UST), KIOM Campus, Korean Convergence Medicine Major, Daejeon, 34054, Republic of Korea
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea
| | - Yeongjun Ban
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju-si, Jeollanam-do, 58245, Republic of Korea
| | - Nam-Hui Yim
- Korean Medicine Application Center, Korea Institute of Oriental Medicine 70 Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Jeong Hwan Park
- KM Data Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseongdae-ro, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Chang Ho Kang
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Youngmin Kang
- University of Science & Technology (UST), KIOM Campus, Korean Convergence Medicine Major, Daejeon, 34054, Republic of Korea
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju-si, Jeollanam-do, 58245, Republic of Korea
| |
Collapse
|
2
|
Chen H, Nan LF, Chen XS, Wan YB, Hu XH, Wang XH, Hu XP. Efficient ruthenium-catalyzed hydrogenation of aromatic dicarboxylates supported by a 1-phenylethylamine-based P,N,N-ligand. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
3
|
Shi Y, Wang Y, Huang Z, Zhang F, Shao Y. t BuOLi-Promoted Hydroboration of Esters and Epoxides. ACS OMEGA 2022; 7:18876-18886. [PMID: 35694491 PMCID: PMC9178618 DOI: 10.1021/acsomega.2c01866] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Commercially available and inexpensive lithium tert-butoxide ( t BuOLi) acts as a good precatalyst for the hydroboration of esters, lactones, and epoxides using pinacolborane as a borylation agent. Functional groups such as cyano-, nitro-, amino-, vinyl, and alkynyl are unaffected under the presented hydroboration process, representing high chemoselectivity. This transformation has also been effectively applied to the synthesis of key intermediates of Erlotinib and Cinacalcet. Preliminary investigations of the mechanism show that the hydroboration proceeds through the in situ formed BH3 species.
Collapse
Affiliation(s)
- Yinyin Shi
- College
of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yue Wang
- College
of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Zhefan Huang
- College
of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Fangjun Zhang
- School
of Pharmaceutical Sciences, Wenzhou Medical
University, Wenzhou 325035, China
| | - Yinlin Shao
- College
of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
4
|
Affiliation(s)
- Arpita Singh
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Chemistry & Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Michael Findlater
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Chemistry & Biochemistry, University of California Merced, Merced, California 95343, United States
| |
Collapse
|
5
|
Bernauer J, Pölker J, Jacobi von Wangelin A. Redox-active BIAN-based Diimine Ligands in Metal-Catalyzed Small Molecule Syntheses. ChemCatChem 2022; 14:e202101182. [PMID: 35875682 PMCID: PMC9298226 DOI: 10.1002/cctc.202101182] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/24/2021] [Indexed: 12/14/2022]
Abstract
α-Diimine ligands have significantly shaped the coordination chemistry of most transition metal complexes. Among them, bis(imino)acenaphthene ligands (BIANs) have recently been matured to great versatility and applicability to catalytic reactions. Besides variations of the ligand periphery, the great versatility of BIAN ligands resides within their ability to undergo facile electronic manipulations. This review highlights key aspects of BIAN ligands in metal complexes and summarizes recent contributions of metal-BIAN catalysts to syntheses of small and functionalized organic molecules.
Collapse
Affiliation(s)
- Josef Bernauer
- Department of ChemistryUniversity of HamburgMartin Luther King Pl 620146HamburgGermany
| | - Jennifer Pölker
- Department of ChemistryUniversity of HamburgMartin Luther King Pl 620146HamburgGermany
| | | |
Collapse
|
6
|
Bazkiaei AR, Wiseman M, Findlater M. Iron-catalysed hydroboration of non-activated imines and nitriles: kinetic and mechanistic studies. RSC Adv 2021; 11:15284-15289. [PMID: 35424078 PMCID: PMC8698235 DOI: 10.1039/d1ra02001c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Iron-catalysed hydroboration of imines and nitriles has been developed under low catalyst loading (1 mol%) in the presence of HBpin. A wide scope of substrate was found to smoothly undergo hydroboration, including electron releasing/withdrawing and halogen substitution patterns and cyclic substrates which all afforded the corresponding amines in good to excellent yields. Dihydroboration of nitriles was achieved conveniently under solvent free and additive free conditions. Promisingly, this catalytic system is also capable of the hydroboration of challenging ketimine substrates. Preliminary kinetic analysis of imine hydroboration reveals a first-order dependence on catalyst concentration. Both HBpin and 4-fluorophenyl-N-phenylmethanimine (1b) appear to exhibit saturation kinetics with first order dependence up to 0.5 mmol HBpin and 0.75 mmol imine, respectively. Temperature-dependent rate experiments for imine hydroboration have also been explored. Activation parameters for the hydroboration of FPhC[double bond, length as m-dash]NPh (1b) were determined from the Eyring and Arrhenius plots with ΔS ≠, ΔH ≠, and E a values of -28.69 (±0.3) e.u., 12.95 (±0.04) kcal mol-1, and 15.22 (±0.09) kcal mol-1, respectively.
Collapse
Affiliation(s)
| | - Michael Wiseman
- Department of Chemistry & Biochemistry, Texas Tech University Lubbock Texas 79409 USA
| | - Michael Findlater
- Department of Chemistry & Biochemistry, Texas Tech University Lubbock Texas 79409 USA
| |
Collapse
|
7
|
Moskalev MV, Razborov DA, Skatova AA, Bazanov AA, Fedushkin IL. Alkali Metal Reduction of 1,2‐Bis[(2,6‐dibenzhydryl‐4‐methylphenyl)imino]acenaphthene (Ar
BIG
‐bian) to Radical‐Anion. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202000909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mikhail V. Moskalev
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences Tropinina Str. 49 603137 Nizhny Novgorod Russian Federation
| | - Danila A. Razborov
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences Tropinina Str. 49 603137 Nizhny Novgorod Russian Federation
| | - Alexandra A. Skatova
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences Tropinina Str. 49 603137 Nizhny Novgorod Russian Federation
| | - Andrey A. Bazanov
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences Tropinina Str. 49 603137 Nizhny Novgorod Russian Federation
| | - Igor L. Fedushkin
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences Tropinina Str. 49 603137 Nizhny Novgorod Russian Federation
| |
Collapse
|
8
|
Hofmann M, Sundermeier J, Alberti C, Enthaler S. Zinc(II) acetate Catalyzed Depolymerization of Poly(ethylene terephthalate). ChemistrySelect 2020. [DOI: 10.1002/slct.202002260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Melanie Hofmann
- Universität Hamburg Institut für Anorganische und Angewandte Chemie Martin-Luther-King-Platz 6 D–20146 Hamburg Germany
| | - Jannis Sundermeier
- Universität Hamburg Institut für Anorganische und Angewandte Chemie Martin-Luther-King-Platz 6 D–20146 Hamburg Germany
| | - Christoph Alberti
- Universität Hamburg Institut für Anorganische und Angewandte Chemie Martin-Luther-King-Platz 6 D–20146 Hamburg Germany
| | - Stephan Enthaler
- Universität Hamburg Institut für Anorganische und Angewandte Chemie Martin-Luther-King-Platz 6 D–20146 Hamburg Germany
| |
Collapse
|
9
|
Khusnutdinov RI, Bayguzina AR. New advances in the catalysis of organic reactions by iron compounds. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The review summarizes and systematizes the literature data on a new promising application area of iron compounds, that is, catalysis of organic reactions. The considered reactions include halogenation, formation of C−C bonds with the participation of various substrates, new methods for the synthesis of ethers and aromatic and heteroaromatic carboxylic acid esters, N-alkylation of aliphatic and aromatic amines and amidation of olefins and cyclopropane-containing hydrocarbons. The advances in the synthesis of quinolines and unusual cyclization reactions catalyzed by iron complexes are described.
The bibliography includes 144 references.
Collapse
|
11
|
Singh A, Shafiei‐Haghighi S, Smith CR, Unruh DK, Findlater M. Hydroboration of Alkenes and Alkynes Employing Earth‐Abundant Metal Catalysts. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900615] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Arpita Singh
- Department of Chemistry & Biochemistry Texas Tech University Lubbock, Texas 79409 USA
| | - Sara Shafiei‐Haghighi
- Department of Chemistry & Biochemistry Texas Tech University Lubbock, Texas 79409 USA
| | - Cecilia R. Smith
- Department of Chemistry & Biochemistry Texas Tech University Lubbock, Texas 79409 USA
| | - Daniel K. Unruh
- Department of Chemistry & Biochemistry Texas Tech University Lubbock, Texas 79409 USA
| | - Michael Findlater
- Department of Chemistry & Biochemistry Texas Tech University Lubbock, Texas 79409 USA
| |
Collapse
|
12
|
Tamang SR, Findlater M. Emergence and Applications of Base Metals (Fe, Co, and Ni) in Hydroboration and Hydrosilylation. Molecules 2019; 24:E3194. [PMID: 31484333 PMCID: PMC6749197 DOI: 10.3390/molecules24173194] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/16/2019] [Accepted: 08/26/2019] [Indexed: 02/08/2023] Open
Abstract
Base metal catalysis offers an alternative to reactions, which were once dominated by precious metals in hydrofunctionalization reactions. This review article details the development of some base metals (Fe, Co, and Ni) in the hydroboration and hydrosilylation reactions concomitant with a brief overview of recent advances in the field. Applications of both commercially available metal salts and well-defined metal complexes in catalysis and opportunities to further advance the field is discussed as well.
Collapse
Affiliation(s)
- Sem Raj Tamang
- Memorial Circle & Boston, Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Michael Findlater
- Memorial Circle & Boston, Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|