1
|
Benazza R, Koutsopetras I, Vaur V, Chaubet G, Hernandez-Alba O, Cianférani S. SEC-MS in denaturing conditions (dSEC-MS) for in-depth analysis of rebridged monoclonal antibody-based formats. Talanta 2024; 272:125727. [PMID: 38364570 DOI: 10.1016/j.talanta.2024.125727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/04/2023] [Accepted: 01/27/2024] [Indexed: 02/18/2024]
Abstract
Disulfide rebridging methods are emerging recently as new ways to specifically modify antibody-based entities and produce future conjugates. Briefly, the solvent-accessible disulfide bonds of antibodies or antigen-binding fragments (Fab) thereof are reduced under controlled conditions and further covalently attached with a rebridging agent allowing the incorporation of one payload per disulfide bond. There are many examples of successful rebridging cases providing homogeneous conjugates due to the use of symmetrical reagents, such as dibromomaleimides. However, partial rebridging due to the use of unsymmetrical ones, containing functional groups with different reactivity, usually leads to the development of heterogeneous species that cannot be identified by a simple sodium dodecyl sulfate-polyacrylamide gel eletrophoresis (SDS-PAGE) due to its lack of sensitivity, resolution and low mass accuracy. Mass spectrometry coupled to liquid chromatography (LC-MS) approaches have already been demonstrated as highly promising alternatives for the characterization of newly developed antibody-drug-conjugate (ADC) and monoclonal antibody (mAb)-based formats. We report here the in-depth characterization of covalently rebridged antibodies and Fab fragments in-development, using size-exclusion chromatography hyphenated to mass spectrometry in denaturing conditions (denaturing SEC-MS, dSEC-MS). DSEC-MS was used to monitor closely the rebridging reaction of a conjugated trastuzumab, in addition to conjugated Fab fragments, which allowed an unambiguous identification of the covalently rebridged products along with the unbound species. This all-in-one approach allowed a straightforward analysis of the studied samples with precise mass measurement; critical quality attributes (CQAs) assessment along with rebridging efficiency determination.
Collapse
Affiliation(s)
- Rania Benazza
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, 67087 Strasbourg, France; Infrastructure Nationale de Protéomique ProFI-FR2048, 67087 Strasbourg, France
| | - Ilias Koutsopetras
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Valentine Vaur
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, 67087 Strasbourg, France; Infrastructure Nationale de Protéomique ProFI-FR2048, 67087 Strasbourg, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, 67087 Strasbourg, France; Infrastructure Nationale de Protéomique ProFI-FR2048, 67087 Strasbourg, France.
| |
Collapse
|
2
|
Liao Y, Wang M, Jiang X. Sulfur-containing peptides: Synthesis and application in the discovery of potential drug candidates. Curr Opin Chem Biol 2023; 75:102336. [PMID: 37269675 DOI: 10.1016/j.cbpa.2023.102336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 06/05/2023]
Abstract
Peptides act as biological mediators and play a key role of various physiological activities. Sulfur-containing peptides are widely used in natural products and drug molecules due to their unique biological activity and chemical reactivity of sulfur. Disulfides, thioethers, and thioamides are the most common motifs of sulfur-containing peptides, and they have been extensively studied and developed for synthetic methodology as well as pharmaceutical applications. This review focuses on the illustration of these three motifs in natural products and drugs, as well as the recent advancements in the synthesis of the corresponding core scaffolds.
Collapse
Affiliation(s)
- Yanyan Liao
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Ming Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China; State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Elemento-Organic Chemistry, Nankai University, China.
| |
Collapse
|
3
|
Ray D, Quijano RN, Andricioaei I. Point mutations in SARS-CoV-2 variants induce long-range dynamical perturbations in neutralizing antibodies. Chem Sci 2022; 13:7224-7239. [PMID: 35799828 PMCID: PMC9214918 DOI: 10.1039/d2sc00534d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/23/2022] [Indexed: 01/02/2023] Open
Abstract
Monoclonal antibodies are emerging as a viable treatment for the coronavirus disease 19 (COVID-19). However, newly evolved variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can reduce the efficacy of currently available antibodies and can diminish vaccine-induced immunity. Here, we demonstrate that the microscopic dynamics of neutralizing monoclonal antibodies can be profoundly modified by the mutations present in the spike proteins of the SARS-COV-2 variants currently circulating in the world population. The dynamical perturbations within the antibody structure, which alter the thermodynamics of antigen recognition, are diverse and can depend both on the nature of the antibody and on the spatial location of the spike mutation. The correlation between the motion of the antibody and that of the spike receptor binding domain (RBD) can also be changed, modulating binding affinity. Using protein-graph-connectivity networks, we delineated the mutant-induced modifications in the information-flow along allosteric pathway throughout the antibody. Changes in the collective dynamics were spatially distributed both locally and across long-range distances within the antibody. On the receptor side, we identified an anchor-like structural element that prevents the detachment of the antibodies; individual mutations there can significantly affect the antibody binding propensity. Our study provides insight into how virus neutralization by monoclonal antibodies can be impacted by local mutations in the epitope via a change in dynamics. This realization adds a new layer of sophistication to the efforts for rational design of monoclonal antibodies against new variants of SARS-CoV2, taking the allostery in the antibody into consideration. Mutations in the new variants of SARS-CoV-2 spike protein modulates the dynamics of the neutralizing antibodies. Capturing such modulations from MD simulations and graph network model identifies the role of mutations in facilitating immune evasion.![]()
Collapse
Affiliation(s)
- Dhiman Ray
- Department of Chemistry, University of California Irvine Irvine CA 92697 USA
| | | | - Ioan Andricioaei
- Department of Chemistry, University of California Irvine Irvine CA 92697 USA .,Department of Physics and Astronomy, University of California Irvine Irvine CA 92697 USA
| |
Collapse
|
4
|
Angelastro A, Barkhanskiy A, Mattey AP, Pallister EG, Spiess R, Goundry W, Barran P, Flitsch SL. Galactose Oxidase Enables Modular Assembly of Conjugates from Native Antibodies with High Drug-to-Antibody Ratios. CHEMSUSCHEM 2022; 15:e202102592. [PMID: 34931761 PMCID: PMC9303943 DOI: 10.1002/cssc.202102592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/20/2021] [Indexed: 05/31/2023]
Abstract
The potential of antibody conjugates with high drug loading in anticancer therapy has recently been highlighted by the approval of Trastuzumab deruxtecan and Sacituzumab govitecan. These biopharmaceutical approaches have spurred interest in bioconjugation strategies with high and defined degrees of drug-to-antibody ratio (DAR), in particular on native antibodies. Here, a glycoengineering methodology was developed to generate antibody drug conjugates with DAR of up to eight, by combining highly selective enzymatic galactosylation and oxidation with biorthogonal tandem Knoevenagel-Michael addition chemistry. This four-step approach offers a selective route to conjugates from native antibodies with high drug loading, and thus illustrates how biocatalysis can be used for the generation of biopharmaceuticals using mild reaction conditions.
Collapse
Affiliation(s)
- Antonio Angelastro
- School of Chemistry and Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DN
| | - Alexey Barkhanskiy
- School of Chemistry and Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DN
| | - Ashley P. Mattey
- School of Chemistry and Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DN
| | - Edward G. Pallister
- School of Chemistry and Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DN
| | - Reynard Spiess
- School of Chemistry and Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DN
| | - William Goundry
- The Department of Pharmaceutical SciencesAstraZenecaSilk Road Business ParkMacclesfieldSK10 2NAUK
| | - Perdita Barran
- School of Chemistry and Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DN
| | - Sabine L. Flitsch
- School of Chemistry and Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DN
| |
Collapse
|
5
|
Su Z, Xiao D, Xie F, Liu L, Wang Y, Fan S, Zhou X, Li S. Antibody-drug conjugates: Recent advances in linker chemistry. Acta Pharm Sin B 2021; 11:3889-3907. [PMID: 35024314 PMCID: PMC8727783 DOI: 10.1016/j.apsb.2021.03.042] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Antibody–drug conjugates (ADCs) are gradually revolutionizing clinical cancer therapy. The antibody–drug conjugate linker molecule determines both the efficacy and the adverse effects, and so has a major influence on the fate of ADCs. An ideal linker should be stable in the circulatory system and release the cytotoxic payload specifically in the tumor. However, existing linkers often release payloads nonspecifically and inevitably lead to off-target toxicity. This defect is becoming an increasingly important factor that restricts the development of ADCs. The pursuit of ADCs with optimal therapeutic windows has resulted in remarkable progress in the discovery and development of novel linkers. The present review summarizes the advance of the chemical trigger, linker‒antibody attachment and linker‒payload attachment over the last 5 years, and describes the ADMET properties of ADCs. This work also helps clarify future developmental directions for the linkers.
Collapse
Affiliation(s)
- Zheng Su
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Dian Xiao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Fei Xie
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Lianqi Liu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yanming Wang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Shiyong Fan
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Corresponding author. Tel: +86 10 66930603 (Shiyong Fan), +86 10 66930673 (Xinbo Zhou).
| | - Xinbo Zhou
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Corresponding author. Tel: +86 10 66930603 (Shiyong Fan), +86 10 66930673 (Xinbo Zhou).
| | - Song Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
6
|
Haim A, Neubacher S, Grossmann TN. Protein Macrocyclization for Tertiary Structure Stabilization. Chembiochem 2021; 22:2672-2679. [PMID: 34060202 PMCID: PMC8453710 DOI: 10.1002/cbic.202100111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/26/2021] [Indexed: 12/30/2022]
Abstract
Proteins possess unique molecular recognition capabilities and enzymatic activities, features that are usually tied to a particular tertiary structure. To make use of proteins for biotechnological and biomedical purposes, it is often required to enforce their tertiary structure in order to ensure sufficient stability under the conditions inherent to the application of interest. The introduction of intramolecular crosslinks has proven efficient in stabilizing native protein folds. Herein, we give an overview of methods that allow the macrocyclization of expressed proteins, discussing involved reaction mechanisms and structural implications.
Collapse
Affiliation(s)
- Anissa Haim
- Department of Chemistry and Pharmaceutical SciencesVU University AmsterdamAmsterdamThe Netherlands
| | - Saskia Neubacher
- Department of Chemistry and Pharmaceutical SciencesVU University AmsterdamAmsterdamThe Netherlands
- Incircular B.V.De Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Tom N. Grossmann
- Department of Chemistry and Pharmaceutical SciencesVU University AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute of Molecular and Life SciencesVU University AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
7
|
Stieger CE, Franz L, Körlin F, Hackenberger CPR. Diethynyl Phosphinates for Cysteine-Selective Protein Labeling and Disulfide Rebridging. Angew Chem Int Ed Engl 2021; 60:15359-15364. [PMID: 34080747 PMCID: PMC8362001 DOI: 10.1002/anie.202100683] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/17/2021] [Indexed: 12/18/2022]
Abstract
Diethynyl phosphinates were developed as bisfunctional electrophiles for the site-selective modification of peptides, proteins and antibodies. One of their electron-deficient triple bonds reacts selectively with a thiol and positions an electrophilic moiety for a subsequent intra- or intermolecular reaction with another thiol. The obtained conjugates were found to be stable in human plasma and in the presence of small thiols. We further demonstrate that this method is suitable for the generation of functional protein conjugates for intracellular delivery. Finally, this reagent class was used to generate functional homogeneously rebridged antibodies that remain specific for their target. Their modular synthesis, thiol selectivity and conjugate stability make diethynyl phosphinates ideal candidates for protein conjugation for biological and pharmaceutical applications.
Collapse
Affiliation(s)
- Christian E. Stieger
- Chemical Biology DepartmentLeibniz-Forschungsinstitut für Molekulare Pharmakologie, im Forschungsverbund Berlin e.V. (FMP)Campus Berlin-Buch, Robert-Roessle-Strasse 1013125BerlinGermany
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| | - Luise Franz
- Chemical Biology DepartmentLeibniz-Forschungsinstitut für Molekulare Pharmakologie, im Forschungsverbund Berlin e.V. (FMP)Campus Berlin-Buch, Robert-Roessle-Strasse 1013125BerlinGermany
| | - Frieder Körlin
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| | - Christian P. R. Hackenberger
- Chemical Biology DepartmentLeibniz-Forschungsinstitut für Molekulare Pharmakologie, im Forschungsverbund Berlin e.V. (FMP)Campus Berlin-Buch, Robert-Roessle-Strasse 1013125BerlinGermany
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| |
Collapse
|
8
|
Stieger CE, Franz L, Körlin F, Hackenberger CPR. Diethinylphosphinate für die Cystein‐selektive Proteinmarkierung und Disulfid‐Verbrückung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Christian E. Stieger
- Department Chemische Biologie II Leibniz-Forschungsinstitut für Molekulare Pharmakologie, im Forschungsverbund Berlin e.V. (FMP) Campus Berlin-Buch Robert-Roessle-Straße 10 13125 Berlin Deutschland
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Luise Franz
- Department Chemische Biologie II Leibniz-Forschungsinstitut für Molekulare Pharmakologie, im Forschungsverbund Berlin e.V. (FMP) Campus Berlin-Buch Robert-Roessle-Straße 10 13125 Berlin Deutschland
| | - Frieder Körlin
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Christian P. R. Hackenberger
- Department Chemische Biologie II Leibniz-Forschungsinstitut für Molekulare Pharmakologie, im Forschungsverbund Berlin e.V. (FMP) Campus Berlin-Buch Robert-Roessle-Straße 10 13125 Berlin Deutschland
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| |
Collapse
|
9
|
Marquard AN, Carlson JCT, Weissleder R. Expanding the Scope of Antibody Rebridging with New Pyridazinedione-TCO Constructs. Bioconjug Chem 2020; 31:1616-1623. [PMID: 32286045 PMCID: PMC7788567 DOI: 10.1021/acs.bioconjchem.0c00155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Disulfide rebridging methods have recently emerged as a route to hinge region-specific antibody modification, and there exist numerous examples of successful rebridging chemistry applied to clinically relevant human IgG1 antibodies. Here, dibromopyridazinedione disulfide rebridging is adapted to fast trans-cyclooctene/tetrazine (TCO/Tz) bioorthogonal ligations and extended beyond therapeutic human IgG1 antibodies for the first time to include mouse and rat monoclonal antibodies integral to multiplexed analytical diagnostics. In spite of a common architecture, only a subset of antibody host species and IgG isotype subclasses can be rebridged, highlighting the intricate relationship between hinge region sequence, structure, biological activity, and the conjugation chemistry of IgG antibodies.
Collapse
Affiliation(s)
- Angela N. Marquard
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA
| | - Jonathan C. T. Carlson
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA
- Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA
- Department of Systems Biology, Harvard Medical School, Boston, MA
| |
Collapse
|
10
|
Cheng WL, Kao YH, Chen YC, Lin YK, Chen SA, Chen YJ. Macrophage migration inhibitory factor increases atrial arrhythmogenesis through CD74 signaling. Transl Res 2020; 216:43-56. [PMID: 31669150 DOI: 10.1016/j.trsl.2019.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 09/04/2019] [Accepted: 10/02/2019] [Indexed: 01/23/2023]
Abstract
Macrophage migration inhibitory factor (MIF), a pleiotropic inflammatory cytokine, is highly expressed in patients with atrial fibrillation (AF). CD74 (major histocompatibility complex, class II invariant chain) is the main receptor for MIF. However, the role of the MIF/CD74 axis in atrial arrhythmogenesis is unclear. In this study, we investigated the effects of MIF/CD74 signaling on atrial electrophysiological characteristics and determined its underlying mechanisms. Confocal fluorescence microscopy, patch clamp, and western blot analysis were used to study calcium homeostasis, ionic currents, and calcium-related signaling in MIF-treated HL-1 atrial cardiomyocytes with or without anti-CD74 neutralized antibodies treatment. Furthermore, electrocardiographic telemetry recording and echocardiography were obtained from mice treated with MIF. Compared with controls, MIF-treated HL-1 myocytes had increased calcium transients, sarcoplasmic reticulum (SR) calcium content, Na+/Ca2+ exchanger (NCX) efflux rate, calcium leak, transient outward potassium current, and ultra-rapid delayed rectifier potassium current. Furthermore, MIF could induce expression of SR Ca2+ATPase, NCX, phosphorylation of ryanodine receptor 2 (RyR2), and activation of calcium/calmodulin kinase II (CaMKII) when compared with control cells. MIF-mediated electrical dysregulation and CaMKII-RyR2 signaling activation were attenuated through blocking of CD74. Moreover, MIF-injected mice had lesser left atrium fractional shortening, greater atrial fibrosis, and atrial ectopic beats than control (nonspecific immunoglobulin treated) or MIF combined with anti-CD74 neutralized antibody-treated mice. Consequently, our study on MIF/CD74 signaling has pointed out a new potential therapeutic intervention of AF patients with MIF elevation.
Collapse
Affiliation(s)
- Wan-Li Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shih-Ann Chen
- Division of Cardiology and Cardiovascular Research Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
11
|
Xu L, Raabe M, Zegota MM, Nogueira JCF, Chudasama V, Kuan SL, Weil T. Site-selective protein modification via disulfide rebridging for fast tetrazine/trans-cyclooctene bioconjugation. Org Biomol Chem 2020; 18:1140-1147. [PMID: 31971218 DOI: 10.1039/c9ob02687h] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An inverse electron demand Diels-Alder reaction between tetrazine and trans-cyclooctene (TCO) holds great promise for protein modification and manipulation. Herein, we report the design and synthesis of a tetrazine-based disulfide rebridging reagent, which allows the site-selective installation of a tetrazine group into disulfide-containing peptides and proteins such as the hormone somatostatin (SST) and the antigen binding fragment (Fab) of human immunoglobulin G (IgG). The fast and efficient conjugation of the tetrazine modified proteins with three different TCO-containing substrates to form a set of bioconjugates in a site-selective manner was successfully demonstrated for the first time. Homogeneous, well-defined bioconjugates were obtained underlining the great potential of our method for fast bioconjugation in emerging protein therapeutics. The formed bioconjugates were stable against glutathione and in serum, and they maintained their secondary structure. With this work, we broaden the scope of tetrazine chemistry for site-selective protein modification to prepare well-defined SST and Fab conjugates with preserved structures and good stability under biologically relevant conditions.
Collapse
Affiliation(s)
- Lujuan Xu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. and Institute of Inorganic Chemistry I, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Marco Raabe
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. and Institute of Inorganic Chemistry I, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Maksymilian M Zegota
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. and Institute of Inorganic Chemistry I, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | - Vijay Chudasama
- Department of Chemistry, University College London, London, UK
| | - Seah Ling Kuan
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. and Institute of Inorganic Chemistry I, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. and Institute of Inorganic Chemistry I, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
12
|
Huang R, Sheng Y, Wei D, Yu J, Chen H, Jiang B. Bis(vinylsulfonyl)piperazines as efficient linkers for highly homogeneous antibody-drug conjugates. Eur J Med Chem 2020; 190:112080. [PMID: 32018094 DOI: 10.1016/j.ejmech.2020.112080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/18/2022]
Abstract
Disulfide re-bridging strategy has demonstrated significant advantages in the construction of homogeneous antibody drug conjugates (ADCs). However, a major issue that disulfide scrambling at the hinge region of antibody leads to the formation of "half-antibody" has appeared for many re-bridging linkers. We present bis(vinylsulfonyl)piperazines (BVP) as efficient linkers to selectively re-bridge disulfides at the antigen-binding fragment (Fab) regions and produce highly homogeneous conjugates with a loading of two drugs without disulfide scrambling. We also found that optically active (S)-configuration linkers led to more sufficient conjugation compared with (R)-configuration. The BVP-linked ADCs demonstrated superior efficacy and antigen-selectivity in vitro cytotoxicity.
Collapse
Affiliation(s)
- Rong Huang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Yao Sheng
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Ding Wei
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Jianghui Yu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Hongli Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China.
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China.
| |
Collapse
|
13
|
Kang J, Halseth T, Vallejo D, Najafabadi ZI, Sen KI, Ford M, Ruotolo BT, Schwendeman A. Assessment of biosimilarity under native and heat-stressed conditions: rituximab, bevacizumab, and trastuzumab originators and biosimilars. Anal Bioanal Chem 2019; 412:763-775. [DOI: 10.1007/s00216-019-02298-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/03/2019] [Accepted: 11/21/2019] [Indexed: 10/25/2022]
|
14
|
Bahou C, Love EA, Leonard S, Spears RJ, Maruani A, Armour K, Baker JR, Chudasama V. Disulfide Modified IgG1: An Investigation of Biophysical Profile and Clinically Relevant Fc Interactions. Bioconjug Chem 2019; 30:1048-1054. [PMID: 30855134 DOI: 10.1021/acs.bioconjchem.9b00174] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Modification of immunoglobulin G (IgG) 1 proteins in cancer treatment is a rapidly growing field of research. Antibody-drug conjugates (ADCs) exploit the targeted nature of this immunotherapy by conjugating highly potent drugs to antibodies, allowing for effective transport of cargo(s) to cancerous cells. Of the many bioconjugation strategies now available for the formation of highly homogeneous ADCs, disulfide modification is considered an effective, low-cost, and widely accepted method for modifying IgG1s for improved clinical benefit. However, little is known about how disulfide modification impacts clinically relevant fragment crystallizable (Fc) region interactions. Although often overlooked as a secondary ADC function, Fc interactions could prove key in the rational design of cancer cell-targeting ADCs through consideration of potent mechanisms such as antibody-dependent cellular cytotoxicity (ADCC). This work explores different IgG1 disulfide modification techniques and the effect they have on quantifiable secondary IgG1 Fc interactions (e.g., CD16a and FcRn). The solvent accessible disulfide residues of trastuzumab, a clinically relevant IgG1, were modified to provide a range of bioconjugates with differing amounts of interchain covalent linkages. It was found that by natively rebridging the IgG1 model, all tested Fc functionalities were not significantly affected. Additionally, in non Fc-specific biophysical experiments (e.g., thermal stability/aggregation), the natively rebridged species provided an exceptional profile, showing no significant change from the tested native antibody. Conjugates with significant disruption of the covalent connectivity of IgG1 chains resulted in a suboptimal Fc profile (CD16a kinetics or ADCC activity), in addition to substandard non Fc-specific attributes (thermal stability). These results advocate native disulfide rebridging as an excellent synthetic strategy for forming homogeneous IgG1 bioconjugates, with no reported negative impact on biophysical profile relative to the native antibody.
Collapse
Affiliation(s)
- Calise Bahou
- Department of Chemistry , University College London , 20 Gordon Street , WC1H OAJ , London , United Kingdom.,LifeArc , Accelerator Building, SBC Open Innovation Campus, SG1 2FX , Stevenage , United Kingdom
| | - Elizabeth A Love
- LifeArc , Accelerator Building, SBC Open Innovation Campus, SG1 2FX , Stevenage , United Kingdom
| | - Siobhán Leonard
- LifeArc , Accelerator Building, SBC Open Innovation Campus, SG1 2FX , Stevenage , United Kingdom
| | - Richard J Spears
- Department of Chemistry , University College London , 20 Gordon Street , WC1H OAJ , London , United Kingdom
| | - Antoine Maruani
- Department of Chemistry , University College London , 20 Gordon Street , WC1H OAJ , London , United Kingdom
| | - Kathryn Armour
- LifeArc , Accelerator Building, SBC Open Innovation Campus, SG1 2FX , Stevenage , United Kingdom
| | - James R Baker
- Department of Chemistry , University College London , 20 Gordon Street , WC1H OAJ , London , United Kingdom
| | - Vijay Chudasama
- Department of Chemistry , University College London , 20 Gordon Street , WC1H OAJ , London , United Kingdom.,Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy , Universidade de Lisboa , 1649-004 Lisbon , Portugal
| |
Collapse
|