1
|
Levitre G, Keess S, Molander GA. Photoinduced Diastereoselective Aminoalkylation of Cubanes. Org Lett 2023. [PMID: 37216214 DOI: 10.1021/acs.orglett.3c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The unique properties of rigid, nonconjugated hydrocarbons provide many opportunities to design molecular building blocks for a variety of applications, but the development of suitable conditions for alkylation of cubanes is quite challenging. Herein, a photoinduced method for aminoalkylation of cubanes is reported. The benign conditions reported allow the incorporation of a wide variety of (hetero)arylimine reaction partners with broad functional group tolerance and high diastereoselectivity.
Collapse
Affiliation(s)
- Guillaume Levitre
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Sebastian Keess
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen 67061, Germany
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
2
|
Vujcic B, Wyllie J, Tania, Burns J, White KF, Cromwell S, Lupton DW, Dutton JL, Soares da Costa TP, Houston SD. Cage hydrocarbons as linkers in dimeric drug design: Case studies with trimethoprim and tedizolid. Bioorg Med Chem Lett 2023; 80:129086. [PMID: 36423825 DOI: 10.1016/j.bmcl.2022.129086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/17/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
The looming threat of a "post-antibiotic era" has been caused by a rapid rise in antibacterial resistance and subsequent depletion of effective antibiotic agents in the clinic. An efficient strategy to address this shortfall lies in the reengineering of pre-existing and commercially available antibiotic drugs. This is exemplified by dimerization, a design concept in which two pharmacophores are covalently linked to form a new chemical entity. The cage hydrocarbons cubane (1), bicyclo[2.2.2]octane (BCO) (2), adamantane (3), and bicyclo[1.1.1]pentane (BCP) (4) present themselves as an attractive family of linkers in this regard. In this report, all four hydrocarbon cages were employed as linkers in a series of dimers based on the commercially available antibiotics trimethoprim and tedizolid. A detailed synthetic roadmap for the protection and deprotection of each pharmacophore is outlined. Several members of the trimethoprim series showed activity on par with that of their trimethoprim progenitor, although this was not the case for the tedizolid series. The design strategy outlined herein highlights the utility of the group as a platform for the rapid and modular construction of future novel antibiotics.
Collapse
Affiliation(s)
- Biljana Vujcic
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Jessica Wyllie
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia; School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Adelaide 5063, South Australia, Australia
| | - Tania
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Jed Burns
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Queensland, Australia
| | - Keith F White
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Simon Cromwell
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| | - David W Lupton
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| | - Jason L Dutton
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Tatiana P Soares da Costa
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia; School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Adelaide 5063, South Australia, Australia
| | - Sevan D Houston
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia; Almac Sciences Ltd, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, United Kingdom.
| |
Collapse
|
3
|
Zanakhov TO, Galenko EE, Novikov MS, Khlebnikov AF. Diazo Strategy for Intramolecular Azirine Ring Expansion: Rh(II)-Catalyzed Synthesis of 2-Hydroxy-3-oxo-2,3-dihydro-1 H-pyrrole-2-carboxylates. J Org Chem 2022; 87:15598-15607. [DOI: 10.1021/acs.joc.2c02177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Timur O. Zanakhov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia
| | - Ekaterina E. Galenko
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia
| | - Mikhail S. Novikov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia
| | - Alexander F. Khlebnikov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia
| |
Collapse
|
4
|
Collin DE, Kovacic K, Light ME, Linclau B. Synthesis of Ortho-Functionalized 1,4-Cubanedicarboxylate Derivatives through Photochemical Chlorocarbonylation. Org Lett 2021; 23:5164-5169. [PMID: 34133174 DOI: 10.1021/acs.orglett.1c01702] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cubane ring has received intense attention as a 3D benzene isostere and scaffold. Mono- and 1,4-disubstituted cubanes are well-described. Here we report a practical procedure for a direct radical-mediated chlorocarbonylation process initially reported by Bashir-Hashemi, to access a range of 2-substituted 1,4-cubanedicarboxylic ester derivatives. A subsequent regioselective ester hydrolysis to give fully differentiated 1,2,4-trisubstituted cubanes is demonstrated.
Collapse
Affiliation(s)
- Diego E Collin
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Kristina Kovacic
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Mark E Light
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Bruno Linclau
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
5
|
Williams CM, Dallaston MA. The Future of Retrosynthesis and Synthetic Planning: Algorithmic, Humanistic or the Interplay? Aust J Chem 2021. [DOI: 10.1071/ch20371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The practice of deploying and teaching retrosynthesis is on the cusp of considerable change, which in turn forces practitioners and educators to contemplate whether this impending change will advance or erode the efficiency and elegance of organic synthesis in the future. A short treatise is presented herein that covers the concept of retrosynthesis, along with exemplified methods and theories, and an attempt to comprehend the impact of artificial intelligence in an era when freely and commercially available retrosynthetic and forward synthesis planning programs are increasingly prevalent. Will the computer ever compete with human retrosynthetic design and the art of organic synthesis?
Collapse
|
6
|
Dallaston MA, Houston SD, Williams CM. Cubane, Bicyclo[1.1.1]pentane and Bicyclo[2.2.2]octane: Impact and Thermal Sensitiveness of Carboxyl-, Hydroxymethyl- and Iodo-substituents. Chemistry 2020; 26:11966-11970. [PMID: 32820575 DOI: 10.1002/chem.202001658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/22/2020] [Indexed: 12/21/2022]
Abstract
With the burgeoning interest in cage motifs for bioactive molecule discovery, and the recent disclosure of 1,4-cubane-dicarboxylic acid impact sensitivity, more research into the safety profiles of cage scaffolds is required. Therefore, the impact sensitivity and thermal decomposition behavior of judiciously selected starting materials and synthetic intermediates of cubane, bicyclo[1.1.1]pentane (BCP), and bicyclo[2.2.2]octane (BCO) were evaluated via hammer test and sealed cell differential scanning calorimetry, respectively. Iodo-substituted systems were found to be more impact sensitive, whereas hydroxymethyl substitution led to more rapid thermodecomposition. Cubane was more likely to be impact sensitive with these substituents, followed by BCP, whereas all BCOs were unresponsive. The majority of derivatives were placed substantially above Yoshida thresholds-a computational indicator of sensitivity.
Collapse
Affiliation(s)
- Madeleine A Dallaston
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Sevan D Houston
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
7
|
Okude R, Mori G, Yagi A, Itami K. Programmable synthesis of multiply arylated cubanes through C-H metalation and arylation. Chem Sci 2020; 11:7672-7675. [PMID: 34094145 PMCID: PMC8159448 DOI: 10.1039/d0sc01909g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cubane (C8H8), a cubic alkane, has long attracted attention owing to its unique 3D structure. In order to utilize the cubane scaffold widely in science and technology, a powerful method for synthesizing diverse cubane derivatives is required. Herein, we report the synthesis of mono-, di-, tri-, and tetra-arylated cubanes. Directed ortho-metalation with lithium base/alkyl zinc and subsequent palladium-catalyzed arylation enabled C–H metalation and arylation of cubane. This reaction allows the late-stage and regioselective installation of a wide range of aryl groups, realizing the first programmable synthesis of diverse multiply arylated cubanes. Cubane has attracted attention due to its unique 3D structure. Herein, we report the programmable synthesis of multiply arylated cubanes. The developed reaction allows the late-stage and regioselective installation of aryl groups.![]()
Collapse
Affiliation(s)
- Ryo Okude
- Graduate School of Science, Nagoya University Chikusa Nagoya 464-8602 Japan
| | - Genki Mori
- Central Pharmaceutical Research Institute, Japan Tobacco Inc. 1-1 Murasaki-cho, Takatsuki Osaka 569-1125 Japan
| | - Akiko Yagi
- Graduate School of Science, Nagoya University Chikusa Nagoya 464-8602 Japan
| | - Kenichiro Itami
- Graduate School of Science, Nagoya University Chikusa Nagoya 464-8602 Japan .,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya 464-8602 Japan
| |
Collapse
|
8
|
Kotha S, Cheekatla SR. Design, synthesis, and rearrangement studies of gem-dimethyl containing cage systems. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Houston SD, Fahrenhorst-Jones T, Xing H, Chalmers BA, Sykes ML, Stok JE, Farfan Soto C, Burns JM, Bernhardt PV, De Voss JJ, Boyle GM, Smith MT, Tsanaktsidis J, Savage GP, Avery VM, Williams CM. The cubane paradigm in bioactive molecule discovery: further scope, limitations and the cyclooctatetraene complement. Org Biomol Chem 2020; 17:6790-6798. [PMID: 31241113 DOI: 10.1039/c9ob01238a] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cubane phenyl ring bioisostere paradigm was further explored in an extensive study covering a wide range of pharmaceutical and agrochemical templates, which included antibiotics (cefaclor, penicillin G) and antihistamine (diphenhydramine), a smooth muscle relaxant (alverine), an anaesthetic (ketamine), an agrochemical instecticide (triflumuron), an antiparasitic (benznidazole) and an anticancer agent (tamibarotene). This investigation highlights the scope and limitations of incorporating cubane into bioactive molecule discovery, both in terms of synthetic compatibility and physical property matching. Cubane maintained bioisosterism in the case of the Chagas disease antiparasitic benznidazole, although it was less active in the case of the anticancer agent (tamibarotenne). Application of the cyclooctatetraene (COT) (bio)motif complement was found to optimize benznidazole relative to the benzene parent, and augmented anticancer activity relative to the cubane analogue in the case of tamibarotene. Like all bioisosteres, scaffolds and biomotifs, however, there are limitations (e.g. synthetic implementation), and these have been specifically highlighted herein using failed examples. A summary of all templates prepared to date by our group that were biologically evaluated strongly supports the concept that cubane is a valuable tool in bioactive molecule discovery and COT is a viable complement.
Collapse
Affiliation(s)
- Sevan D Houston
- School of Chemistry and Molecular Biosciences, University of Queensland (UQ), Brisbane, 4072, Queensland (QLD), Australia.
| | - Tyler Fahrenhorst-Jones
- School of Chemistry and Molecular Biosciences, University of Queensland (UQ), Brisbane, 4072, Queensland (QLD), Australia.
| | - Hui Xing
- School of Chemistry and Molecular Biosciences, University of Queensland (UQ), Brisbane, 4072, Queensland (QLD), Australia.
| | - Benjamin A Chalmers
- School of Chemistry and Molecular Biosciences, University of Queensland (UQ), Brisbane, 4072, Queensland (QLD), Australia.
| | - Melissa L Sykes
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Jeanette E Stok
- School of Chemistry and Molecular Biosciences, University of Queensland (UQ), Brisbane, 4072, Queensland (QLD), Australia.
| | - Clementina Farfan Soto
- School of Chemistry and Molecular Biosciences, University of Queensland (UQ), Brisbane, 4072, Queensland (QLD), Australia.
| | - Jed M Burns
- School of Chemistry and Molecular Biosciences, University of Queensland (UQ), Brisbane, 4072, Queensland (QLD), Australia.
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland (UQ), Brisbane, 4072, Queensland (QLD), Australia.
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland (UQ), Brisbane, 4072, Queensland (QLD), Australia.
| | - Glen M Boyle
- QIMR Berghofer Medical Research Institute, PO Royal Brisbane Hospital, Brisbane, 4029, QLD, Australia
| | - Maree T Smith
- School of Biomedical Sciences, Faculty of Medicine, UQ, Brisbane, Australia
| | - John Tsanaktsidis
- CSIRO Manufacturing, Ian Wark Laboratory, Melbourne, 3168, Victoria (VIC), Australia
| | - G Paul Savage
- CSIRO Manufacturing, Ian Wark Laboratory, Melbourne, 3168, Victoria (VIC), Australia
| | - Vicky M Avery
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland (UQ), Brisbane, 4072, Queensland (QLD), Australia.
| |
Collapse
|
10
|
Sarkar MR, Houston SD, Savage GP, Williams CM, Krenske EH, Bell SG, De Voss JJ. Rearrangement-Free Hydroxylation of Methylcubanes by a Cytochrome P450: The Case for Dynamical Coupling of C–H Abstraction and Rebound. J Am Chem Soc 2019; 141:19688-19699. [DOI: 10.1021/jacs.9b08064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Md. Raihan Sarkar
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Sevan D. Houston
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - G. Paul Savage
- Ian Wark Laboratory, CSIRO Manufacturing, Melbourne, VIC 3168, Australia
| | - Craig M. Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Elizabeth H. Krenske
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Stephen G. Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - James J. De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
11
|
Arachchige KSA, Fahrenhorst-Jones T, Burns JM, Al-Fayaad HA, Behera JN, Rao CNR, Clegg JK, Williams CM. 1,4-Diazacubane crystal structure rectified as piperazinium. Chem Commun (Camb) 2019; 55:11751-11753. [PMID: 31513198 DOI: 10.1039/c9cc06272f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
All 21 [n]-azacubanes are proposed by theoreticians to be stable, however, to-date only the synthesis of 1,4-diazacubane has been reported - as a Ni2+ templated Kagome metal organic framework (MOF). Described herein is the structural reassignment of this Kagome MOF on the basis of deducing the precise experimental procedure, and demonstrating that rather than the formation of 1,4-diazacubane, charge is balanced by disordered piperazinium cations across a twelve-fold symmetry site. Furthermore, quantum chemical calculations reveal that 1,4-diazacubane is unlikely to form under the reported conditions due to unfavorable enthalpies for select hypothetical reactions leading to such a product. This significant structure correction upholds the unconquered synthesis status quo of azacubane.
Collapse
Affiliation(s)
| | - Tyler Fahrenhorst-Jones
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Queensland, Australia.
| | - Jed M Burns
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Queensland, Australia.
| | - Hydar A Al-Fayaad
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Queensland, Australia.
| | - Jogendra N Behera
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560064, India and Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India and School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar 752 050, India
| | - C N R Rao
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560064, India and Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Queensland, Australia.
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Queensland, Australia.
| |
Collapse
|
12
|
Determining the necessity of phenyl ring π-character in warfarin. Bioorg Med Chem Lett 2019; 29:1954-1956. [PMID: 31147103 DOI: 10.1016/j.bmcl.2019.05.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/18/2019] [Accepted: 05/18/2019] [Indexed: 11/23/2022]
Abstract
Despite the difficulty in administering a safe dose regimen and reports of emerging resistance, warfarin (1) remains the most widely-used oral anticoagulant for the prevention and treatment of thrombosis in humans globally. Systematic substitution of the warfarin phenyl ring with either 1,3,5,7-cyclooctatetraene (COT) (2), cubane (3), cyclohexane (4) or cyclooctane (5) and subsequent evaluation against the target enzyme, vitamin K epoxide reductase (VKOR), facilitated interrogation of both steric and electronic properties of the phenyl pharmacophore. The tolerance of VKOR to further functional group modification (carboxylate 14, PTAD adduct 15) was also investigated. The results demonstrate the importance of both annulene conferred π-interactions and ring size in the activity of warfarin.
Collapse
|