1
|
do Carmo Pinheiro R, Souza Marques L, Ten Kathen Jung J, Nogueira CW, Zeni G. Recent Progress in Synthetic and Biological Application of Diorganyl Diselenides. CHEM REC 2024; 24:e202400044. [PMID: 38976862 DOI: 10.1002/tcr.202400044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/08/2024] [Indexed: 07/10/2024]
Abstract
Diorganyl diselenides have emerged as privileged structures because they are easy to prepare, have distinct reactivity, and have broad biological activity. They have also been used in the synthesis of natural products as an electrophile in the organoselenylation of aromatic systems and peptides, reductions of alkenes, and nucleophilic substitution. This review summarizes the advancements in methods for the transformations promoted by diorganyl diselenides in the main functions of organic chemistry. Parallel, it will also describe the main findings on pharmacology and toxicology of diorganyl diselenides, emphasizing anti-inflammatory, hypoglycemic, chemotherapeutic, and antimicrobial activities. Therefore, an examination detailing the reactivity and biological characteristics of diorganyl diselenides provides valuable insights for academic researchers and industrial professionals.
Collapse
Affiliation(s)
- Roberto do Carmo Pinheiro
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Luiza Souza Marques
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Juliano Ten Kathen Jung
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Gilson Zeni
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| |
Collapse
|
2
|
Zhao X, Sun T, Gu W, Qin J, Lu K, Ye F. Copper-catalyzed thiocyanation of cyclobutanone oxime esters using ammonium thiocyanate. Org Biomol Chem 2024; 22:1466-1474. [PMID: 38284473 DOI: 10.1039/d3ob01898a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
A copper-catalyzed thiocyanation of cycloketone oxime esters with ammonium thiocyanate has been developed for the first time. This innovative approach allows access to cyano and thiocyano bifunctionally substituted alkanes, which can be further transformed into their respective trifluoromethylthiol-substituted or difluoromethylthiol-substituted alkylnitriles, alkynyl sulfides, and phosphorothioate esters. The readily available nature of ammonium thiocyanate and the cost-effectiveness of the copper catalyst make this method a promising strategy for the synthesis of sulfur-containing alkylnitriles.
Collapse
Affiliation(s)
- Xia Zhao
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, 300387, China.
| | - Tengteng Sun
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, 300387, China.
| | - Wenxin Gu
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, 300387, China.
| | - Jingwen Qin
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, 300387, China.
| | - Kui Lu
- hina International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, C, Tianjin, 300457, China
| | - Fei Ye
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
3
|
Lee S, Sim J, Lee A. Base-Catalyzed One-Pot Synthesis of Selenosulfides: A Base Basicity-Controlled Approach. J Org Chem 2024; 89:748-755. [PMID: 38127795 DOI: 10.1021/acs.joc.3c02126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
We developed a novel and efficient sequential one-pot synthesis of selenosulfides via a base-catalyzed methodology utilizing readily available starting compounds, under mild reaction conditions. This method eliminated the need for excess oxidants or additives and simplified the synthesis procedure. Furthermore, organic amine bases served as exceptional catalysts for synthesizing the target products. The performance of a catalytic system depends on the basicity of the bases. The selection of suitable bases, based on their pKaH values, is crucial for the selective synthesis of selenosulfides without the formation of byproducts. This method provides a direct route for the preparation of selenosulfides, which are important scaffolds in organic chemistry.
Collapse
|
4
|
Zhong LJ, Fan JH, Chen P, Huang PF, Xiong BQ, Tang KW, Liu Y. Recent advances in ring-opening of cyclobutanone oximes for capturing SO 2, CO or O 2via a radical process. Org Biomol Chem 2023; 22:10-24. [PMID: 38018531 DOI: 10.1039/d3ob01762a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Cyclobutanone oximes and their derivatives are pivotal core structural motifs in organic chemistry. Iminyl-radical-triggered C-C bond cleavage of cyclobutanone oximes delivers an efficient strategy to produce stable distal cyano-substituted alkyl radicals, which can capture SO2, CO or O2 to form cyanoalkylsulfonyl radicals, cyanoalkylcarbonyl radicals or cyanoalkoxyl radicals under mild conditions. In the past several years, cyanoalkylsulfonylation/cyanoalkylcarbonyaltion/cyanoalkoxylation has attracted a lot of interest. In this updated report, the strategies for trapping SO2, CO or O2via iminyl-radical-triggered ring-opening of cyclobutanone oximes are summarized.
Collapse
Affiliation(s)
- Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Jian-Hong Fan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Pu Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|
5
|
Synthesis and Application Dichalcogenides as Radical Reagents with Photochemical Technology. Molecules 2023; 28:molecules28041998. [PMID: 36838986 PMCID: PMC9963440 DOI: 10.3390/molecules28041998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
Dichalcogenides (disulfides and diselenides), as reactants for organic transformations, are important and widely used because of their potential to react with nucleophiles, electrophilic reagents, and radical precursors. In recent years, in combination with photochemical technology, the application of dichalcogenides as stable radical reagents has opened up a new route to the synthesis of various sulfur- and selenium-containing compounds. In this paper, synthetic strategies for disulfides and diselenides and their applications with photochemical technology are reviewed: (i) Cyclization of dichalcogenides with alkenes and alkynes; (ii) direct selenylation/sulfuration of C-H/C-C/C-N bonds; (iii) visible-light-enabled seleno- and sulfur-bifunctionalization of alkenes/alkynes; and (iv) Direct construction of the C(sp)-S bond. In addition, the scopes, limitations, and mechanisms of some reactions are also described.
Collapse
|
6
|
Xia X, Chen X, Zhao B, Yuan Y. Iron-catalyzed intermolecular C–C bond vinylation of cycloketoximes promoted by diboron. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
7
|
Yang X, Xia Y, Tong J, Ouyang L, Lai Y, Luo R, Liao J. Photoinduced radical cascade cyclization of acetylenic acid esters with oxime esters to access cyanalkylated coumarins. Org Biomol Chem 2022; 20:5239-5244. [PMID: 35723258 DOI: 10.1039/d2ob00612j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photoinduced radical cascade cyclization of acetylenic acid esters with oxime esters is described, providing cyanalkylated coumarins in superior yields under mild conditions. Radical capture and luminescence quenching experiments showed that this transformation was accomplished via a radical addition/5-exo spirocyclization/1,2-ester migration process.
Collapse
Affiliation(s)
- Xiao Yang
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China.
| | - Yanping Xia
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China.
| | - Jinghui Tong
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China.
| | - Lu Ouyang
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China.
| | - Yinlong Lai
- College of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan 512005, China
| | - Renshi Luo
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China. .,College of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan 512005, China
| | - Jianhua Liao
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China. .,College of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan 512005, China
| |
Collapse
|
8
|
Azeredo JB, Penteado F, Nascimento V, Sancineto L, Braga AL, Lenardao EJ, Santi C. "Green Is the Color": An Update on Ecofriendly Aspects of Organoselenium Chemistry. Molecules 2022; 27:1597. [PMID: 35268698 PMCID: PMC8911681 DOI: 10.3390/molecules27051597] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
Organoselenium compounds have been successfully applied in biological, medicinal and material sciences, as well as a powerful tool for modern organic synthesis, attracting the attention of the scientific community. This great success is mainly due to the breaking of paradigm demonstrated by innumerous works, that the selenium compounds were toxic and would have a potential impact on the environment. In this update review, we highlight the relevance of these compounds in several fields of research as well as the possibility to synthesize them through more environmentally sustainable methodologies, involving catalytic processes, flow chemistry, electrosynthesis, as well as by the use of alternative energy sources, including mechanochemical, photochemistry, sonochemical and microwave irradiation.
Collapse
Affiliation(s)
- Juliano B. Azeredo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Uruguaiana, Uruguaiana 97501-970, RS, Brazil;
| | - Filipe Penteado
- Laboratório de Síntese Orgânica Limpa-LaSOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, Pelotas 96010-900, RS, Brazil; (F.P.); (E.J.L.)
| | - Vanessa Nascimento
- Laboratório SupraSelen, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, Universidade Federal Fluminense, Niteroi 24020-150, RJ, Brazil
| | - Luca Sancineto
- Group of Catalysis Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06100 Perugia, Italy;
| | - Antonio L. Braga
- Departamento de Química, Universidade Federal de Santa Catarina—UFSC, Florianopolis 88040-900, SC, Brazil;
| | - Eder João Lenardao
- Laboratório de Síntese Orgânica Limpa-LaSOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, Pelotas 96010-900, RS, Brazil; (F.P.); (E.J.L.)
| | - Claudio Santi
- Group of Catalysis Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06100 Perugia, Italy;
| |
Collapse
|
9
|
Kwon K, Simons RT, Nandakumar M, Roizen JL. Strategies to Generate Nitrogen-centered Radicals That May Rely on Photoredox Catalysis: Development in Reaction Methodology and Applications in Organic Synthesis. Chem Rev 2022; 122:2353-2428. [PMID: 34623809 PMCID: PMC8792374 DOI: 10.1021/acs.chemrev.1c00444] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
For more than 70 years, nitrogen-centered radicals have been recognized as potent synthetic intermediates. This review is a survey designed for use by chemists engaged in target-oriented synthesis. This review summarizes the recent paradigm shift in access to and application of N-centered radicals enabled by visible-light photocatalysis. This shift broadens and streamlines approaches to many small molecules because visible-light photocatalysis conditions are mild. Explicit attention is paid to innovative advances in N-X bonds as radical precursors, where X = Cl, N, S, O, and H. For clarity, key mechanistic data is noted, where available. Synthetic applications and limitations are summarized to illuminate the tremendous utility of photocatalytically generated nitrogen-centered radicals.
Collapse
Affiliation(s)
- Kitae Kwon
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| | - R Thomas Simons
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| | - Meganathan Nandakumar
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| | - Jennifer L Roizen
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| |
Collapse
|
10
|
Liu L, Jian Y, Hu W, Zhao S, Shi ZJ, Selander N, ZHOU TAIGANG. Ni and Fe Catalyzed Cascade Radical Reactions of Oxime Esters with Diselenides. Org Chem Front 2022. [DOI: 10.1039/d2qo00586g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A radical cyclization and ring-opening of oxime esters with diselenides was developed. Both Ni(0) and Fe(II) catalysts could be employed for the selenylation of olefin-containing and cyclic oxime ester derivatives....
Collapse
|
11
|
Zheng D, Jana K, Alasmary FA, Daniliuc CG, Studer A. Transition-Metal-Free Intramolecular Radical Aminoboration of Unactivated Alkenes. Org Lett 2021; 23:7688-7692. [PMID: 34542297 DOI: 10.1021/acs.orglett.1c03024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient transition-metal-free cyclizing radical aminoboration of unactivated alkenes is reported. The B2(OH)4 reagent was used as the boron source, and the interaction between B2(OH)4 and an aryloxyamide N-radical precursor enabled the chain reaction to be initiated upon irradiation in the absence of any catalyst. This transformation proceeds via cyclization of an N-radical with subsequent intermolecular C-radical borylation. The cascade shows a broad scope and provides a wide range of high-value cyclic 1,2-aminoboronic esters.
Collapse
Affiliation(s)
- Danqing Zheng
- Organisch-Chemisches Institut, Westfalische Wilhelms-Universität, Corrensstraβe 40, 48149 Münster, Germany.,State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 210009 Nanjing, China
| | - Kalipada Jana
- Organisch-Chemisches Institut, Westfalische Wilhelms-Universität, Corrensstraβe 40, 48149 Münster, Germany
| | - Fatmah Ali Alasmary
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfalische Wilhelms-Universität, Corrensstraβe 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfalische Wilhelms-Universität, Corrensstraβe 40, 48149 Münster, Germany.,Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
12
|
Sun QX, Chen H, Liu S, Wang XQ, Duan XH, Guo LN. Iron-Catalyzed Thiolation and Selenylation of Cycloalkyl Hydroperoxides via C-C Bond Cleavage. J Org Chem 2021; 86:11987-11997. [PMID: 34374284 DOI: 10.1021/acs.joc.1c01366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A cheap iron-catalyzed C-C bond cleavage/thiolation and selenylation of cycloalkyl hydroperoxides are presented. This redox-neutral protocol provides efficient access to diverse distal keto-functionalized thioethers and selenium compounds. Remarkably, only some amounts of disulfides are required for this transformation.
Collapse
Affiliation(s)
- Qing-Xin Sun
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - He Chen
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shuai Liu
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiao-Qiang Wang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Li-Na Guo
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
13
|
Zhao X, Ji L, Gao Y, Sun T, Qiao J, Li A, Lu K. Visible-Light-Promoted Selenocyanation of Cyclobutanone Oxime Esters Using Potassium Selenocyanate. J Org Chem 2021; 86:11399-11406. [PMID: 34365792 DOI: 10.1021/acs.joc.1c00893] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the visible-light-promoted selenocyanation of cyclobutanone oxime esters using potassium selenocyanate in the presence of a fac-Ir(ppy)3 catalyst for the first time. Because of the mild conditions employed and use of readily accessible potassium selenocyanate, this method is an effective and green strategy for the synthesis of cyano and selenocyano bifunctional substituted alkanes.
Collapse
Affiliation(s)
- Xia Zhao
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, China, 300387
| | - Liangshuo Ji
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, China, 300387
| | - Yu Gao
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, China, 300387
| | - Tengteng Sun
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, China, 300387
| | - Jiamin Qiao
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, China, 300387
| | - Ankun Li
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, China, 300387
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China, 300457
| |
Collapse
|
14
|
Ji L, Qiao J, Liu J, Tian M, Lu K, Zhao X. Metal-free chalcogenation of cycloketone oxime esters with dichalcogenides. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Guin S, Majee D, Samanta S. Recent Advances in Visible‐Light‐Driven Photocatalyzed γ‐Cyanoalkylation Reactions. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Soumitra Guin
- Department of Chemistry Indian Institute of TechnologyIndore 453552 Indore India
| | - Debashis Majee
- Department of Chemistry Indian Institute of TechnologyIndore 453552 Indore India
| | - Sampak Samanta
- Department of Chemistry Indian Institute of TechnologyIndore 453552 Indore India
| |
Collapse
|
16
|
Rafique J, Rampon DS, Azeredo JB, Coelho FL, Schneider PH, Braga AL. Light-mediated Seleno-Functionalization of Organic Molecules: Recent Advances. CHEM REC 2021; 21:2739-2761. [PMID: 33656248 DOI: 10.1002/tcr.202100006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 01/21/2023]
Abstract
Organoselenium compounds constitute an important class of substances with applications in the biological, medicinal and material sciences as well as in modern organic synthesis, attracting considerable attention from the scientific community. Therefore, the construction of the C-Se bond via facile, efficient and sustainable strategies to access complex scaffolds from simple substrates are an appealing and hot topic. Visible light can be regarded as an alternative source of energy and is associated with environmentally-friendly processes. Recently, the use of visible-light mediated seleno-functionalization has emerged as an ideal and powerful route to obtain high-value selenylated products, with diminished cost and waste. This approach, involving photo-excited substrates/catalyst and single-electron transfer (SET) between substrates in the presence of visible light has been successfully used in the versatile and direct insertion of organoselenium moieties in activated and unactivated C(sp3 )-H, C(sp2 )-H, C(sp)-H bonds as well as C-heteroatom bonds. In most cases, ease of operation and accessibility of the light source (LEDs or commercial CFL bulbs) makes this approach more attractive and sustainable than the traditional strategies.
Collapse
Affiliation(s)
- Jamal Rafique
- Instituto de Química (INQUI), Universidade Federal de Mato Grosso do Sul -UFMS, Campo Grande, 79074-460, MS -, Brazil
| | - Daniel S Rampon
- Departamento de Química, Universidade Federal do Paraná (UFPR), Curitiba, 81531-990, PR Brazil
| | - Juliano B Azeredo
- Departamento de Farmácia, Universidade Federal do Pampa, Uruguaiana, 97500-970, RS -, Brazil
| | - Felipe L Coelho
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, 91501-970, RS, Brazil
| | - Paulo H Schneider
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, 91501-970, RS, Brazil
| | - Antonio L Braga
- Departamento de Química, Universidade Federal de Santa Catarina-UFSC, Florianópolis, 88040-900, SC, Brazil
| |
Collapse
|
17
|
Tian YM, Guo XN, Braunschweig H, Radius U, Marder TB. Photoinduced Borylation for the Synthesis of Organoboron Compounds. Chem Rev 2021; 121:3561-3597. [PMID: 33596057 DOI: 10.1021/acs.chemrev.0c01236] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Organoboron compounds have important synthetic value and can be applied in numerous transformations. The development of practical and convenient ways to synthesize boronate esters has thus attracted significant interest. Photoinduced borylations originated from stoichiometric reactions of alkanes and arenes with well-defined metal-boryl complexes. Now, photoredox-initiated borylations, catalyzed by either transition metal or organic photocatalysts, and photochemical borylations with high efficiency have become a burgeoning area of research. In this Focus Review, we summarize research on photoinduced borylations, especially emphasizing recent developments and trends. This includes the photoinduced borylation of arenes, alkanes, aryl/alkyl halides, activated carboxylic acids, amines, alcohols, and so on based on transition metal catalysis, metal-free organocatalysis, and direct photochemical activation. We focus on reaction mechanisms involving single-electron transfer, triplet-energy transfer, and other radical processes.
Collapse
Affiliation(s)
- Ya-Ming Tian
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Xiao-Ning Guo
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Todd B Marder
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
18
|
Patel RI, Sharma S, Sharma A. Cyanation: a photochemical approach and applications in organic synthesis. Org Chem Front 2021. [DOI: 10.1039/d1qo00162k] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review summarises the photocatalytic cyanation strategies to construct C(sp2)–CN, C(sp3)–CN and X–CN (X = N, S) bonds.
Collapse
Affiliation(s)
- Roshan I. Patel
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Shivani Sharma
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Anuj Sharma
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| |
Collapse
|
19
|
Dong Y, Ji P, Zhang Y, Wang C, Meng X, Wang W. Organophotoredox-Catalyzed Formation of Alkyl-Aryl and -Alkyl C-S/Se Bonds from Coupling of Redox-Active Esters with Thio/Selenosulfonates. Org Lett 2020; 22:9562-9567. [PMID: 33300807 PMCID: PMC7936573 DOI: 10.1021/acs.orglett.0c03624] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A mild organophotoredox synthetic protocol for forming a Csp3-S/Se bond by reacting widespread redox-active esters with thio/selenosulfonates has been developed. The power of the synthetic manifold is fueled by an unprecedented broad substrate scope and wide functional group tolerance.
Collapse
Affiliation(s)
- Yue Dong
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, USA
| | - Peng Ji
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, USA
| | - Yueteng Zhang
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, USA
| | - Changqing Wang
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, USA
| | - Xiang Meng
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, USA
| | - Wei Wang
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
20
|
|
21
|
|
22
|
Abstract
This article reviews synthetic transformations involving cleavage of a carbon-carbon bond of a four-membered ring, with a particular focus on the examples reported during the period from 2011 to the end of 2019. Most significant is the progress of catalytic reactions involving oxidative addition of carbon-carbon bonds onto transition metals or β-carbon elimination of transition metal alkoxides. When they are looked at from synthetic perspectives, they offer unique and efficient methods to build complex natural products and structures that are difficult to construct by conventional methods. On the other hand, β-scission of radical intermediates has also attracted increasing attention as an alternative elementary step to cleave carbon-carbon bonds. Its site-selectivity is often complementary to that of transition metal-catalyzed reactions. In addition, Lewis acid-mediated and thermally induced ring-opening of cyclobutanone derivatives has garnered renewed attention. On the whole, these examples demonstrate unique synthetic potentials of structurally strained four-membered ring compounds for the construction of organic skeletons.
Collapse
Affiliation(s)
- Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Naoki Ishida
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| |
Collapse
|
23
|
Shu C, Madhavachary R, Noble A, Aggarwal VK. Photoinduced Fragmentation Borylation of Cyclic Alcohols and Hemiacetals. Org Lett 2020; 22:7213-7218. [PMID: 32903015 DOI: 10.1021/acs.orglett.0c02513] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chao Shu
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | | | - Adam Noble
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Varinder K. Aggarwal
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| |
Collapse
|
24
|
Wang M, Shi Z. Methodologies and Strategies for Selective Borylation of C-Het and C-C Bonds. Chem Rev 2020; 120:7348-7398. [PMID: 32597639 DOI: 10.1021/acs.chemrev.9b00384] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Organoborons have emerged as versatile building blocks in organic synthesis to achieve molecular diversity and as carboxylic acid bioisosteres with broad applicability in drug discovery. Traditionally, these compounds are prepared by the substitution of Grignard/lithium reagents with electrophilic boron species and Brown hydroboration. Recent developments have provided new routes for the efficient preparation of organoborons by applying reactions using chemical feedstocks with leaving groups. As compared to the previous methods that used organic halides (I, Br, and Cl), the direct borylation of less reactive C-Het and C-C bonds has become highly important to get efficiency and functional-group compatibility. This Review aims to provide a comprehensive overview of this topic, including (1) C-F bond borylation, (2) C-O bond borylation, (3) C-S bond borylation, (4) C-N bond borylation, and (5) C-C bond borylation. Considerable attention is given to the strategies and mechanisms involved. We expect that this Review will inspire chemists to discover more efficient transformations to expand this field.
Collapse
Affiliation(s)
- Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
25
|
Yu XY, Chen JR, Xiao WJ. Visible Light-Driven Radical-Mediated C–C Bond Cleavage/Functionalization in Organic Synthesis. Chem Rev 2020; 121:506-561. [DOI: 10.1021/acs.chemrev.0c00030] [Citation(s) in RCA: 360] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiao-Ye Yu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| |
Collapse
|
26
|
Yao HF, Li FH, Li J, Wang SY, Ji SJ. Iron(iii) chloride-promoted cyclization of α,β-alkynic tosylhydrazones with diselenides: synthesis of 4-(arylselanyl)-1H-pyrazoles. Org Biomol Chem 2020; 18:1987-1993. [PMID: 32107516 DOI: 10.1039/d0ob00048e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A highly efficient iron(iii) chloride-promoted cyclization between α,β-alkynic tosylhydrazones and diselenides to form a 4-(arylselanyl)-1H-pyrazole skeleton is studied. This reaction forms C-N and C-Se bonds in one step by utilizing inexpensive iron(iii) chloride instead of expensive transition metal additives. This strategy features easily synthesized substrates, mild reaction conditions and high tolerance to functional groups.
Collapse
Affiliation(s)
- Hai-Feng Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Centre of Suzhou Nano Science and Technology, Soochow University, China.
| | - Fang-Hui Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Centre of Suzhou Nano Science and Technology, Soochow University, China.
| | - Jian Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Centre of Suzhou Nano Science and Technology, Soochow University, China.
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Centre of Suzhou Nano Science and Technology, Soochow University, China.
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Centre of Suzhou Nano Science and Technology, Soochow University, China.
| |
Collapse
|
27
|
Zhao X, Tian M, Ji L, Liu J, Lu K. Metal-Free sp3 C-SCF3 Coupling Reactions between Cycloketone Oxime Esters and S-trifluoromethyl 4-Methylbenzenesulfonothioate. Org Lett 2020; 22:863-866. [DOI: 10.1021/acs.orglett.9b04343] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Xia Zhao
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic−Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, China, 300387
| | - Miaomiao Tian
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic−Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, China, 300387
| | - Liangshuo Ji
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic−Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, China, 300387
| | - Junjie Liu
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic−Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, China, 300387
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China, 300457
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China, 300457
| |
Collapse
|
28
|
Li J, Wang SY, Ji SJ. Nickel-Catalyzed Thiolation and Selenylation of Cycloketone Oxime Esters with Thiosulfonate or Seleniumsulfonate. J Org Chem 2019; 84:16147-16156. [DOI: 10.1021/acs.joc.9b02431] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jian Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
29
|
Zhou X, Cheng Y, Chen J, Yu X, Xiao W, Chen J. Copper‐Catalyzed Radical Cross‐Coupling of Oxime Esters and Sulfinates for Synthesis of Cyanoalkylated Sulfones. ChemCatChem 2019. [DOI: 10.1002/cctc.201901695] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xue‐Song Zhou
- CCNU-uOttawa Joint Research Centre Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis Key Laboratory of Pesticides & Chemical Biology Ministry of Education College of ChemistryCentral China Normal University 152 Luoyu Road Hubei 430079 P. R. China
| | - Ying Cheng
- CCNU-uOttawa Joint Research Centre Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis Key Laboratory of Pesticides & Chemical Biology Ministry of Education College of ChemistryCentral China Normal University 152 Luoyu Road Hubei 430079 P. R. China
| | - Jun Chen
- CCNU-uOttawa Joint Research Centre Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis Key Laboratory of Pesticides & Chemical Biology Ministry of Education College of ChemistryCentral China Normal University 152 Luoyu Road Hubei 430079 P. R. China
| | - Xiao‐Ye Yu
- CCNU-uOttawa Joint Research Centre Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis Key Laboratory of Pesticides & Chemical Biology Ministry of Education College of ChemistryCentral China Normal University 152 Luoyu Road Hubei 430079 P. R. China
| | - Wen‐Jing Xiao
- CCNU-uOttawa Joint Research Centre Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis Key Laboratory of Pesticides & Chemical Biology Ministry of Education College of ChemistryCentral China Normal University 152 Luoyu Road Hubei 430079 P. R. China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic Chemistry 345 Lingling Road Shanghai 200032 P. R. China
| | - Jia‐Rong Chen
- CCNU-uOttawa Joint Research Centre Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis Key Laboratory of Pesticides & Chemical Biology Ministry of Education College of ChemistryCentral China Normal University 152 Luoyu Road Hubei 430079 P. R. China
| |
Collapse
|
30
|
Transformation of aromatic bromides into aromatic nitriles with n-BuLi, pivalonitrile, and iodine under metal cyanide-free conditions. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Zhao B, Kong X, Xu B. Visible-light-driven cyanoalkylation of quinoxalinones using cyclobutanone oxime esters as the radical precursors. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.06.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Zhang J, Li X, Xie W, Ye S, Wu J. Photoredox-Catalyzed Sulfonylation of O-Acyl Oximes via Iminyl Radicals with the Insertion of Sulfur Dioxide. Org Lett 2019; 21:4950-4954. [PMID: 31179704 DOI: 10.1021/acs.orglett.9b01323] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A multicomponent sulfonylation of O-acyl oximes via iminyl radicals with the insertion of sulfur dioxide under photoredox catalysis is achieved. This multicomponent reaction of O-acyl oximes, potassium metabisulfite, alkenes, and nucleophiles under visible-light irradiation is efficient, giving rise to a range of sulfones in moderate to good yields. A broad reaction scope is presented with good functional group compatibility.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Chemistry , Fudan University , 2005 Songhu Road , Shanghai 200438 , China.,School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies , Taizhou University , 1139 Shifu Avenue , Taizhou 318000 , China
| | - Xiaofang Li
- School of Chemistry and Chemical Engineering , Hunan University of Science and Technology , Xiangtan 411201 , China
| | - Wenlin Xie
- School of Chemistry and Chemical Engineering , Hunan University of Science and Technology , Xiangtan 411201 , China
| | - Shengqing Ye
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies , Taizhou University , 1139 Shifu Avenue , Taizhou 318000 , China
| | - Jie Wu
- Department of Chemistry , Fudan University , 2005 Songhu Road , Shanghai 200438 , China.,School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies , Taizhou University , 1139 Shifu Avenue , Taizhou 318000 , China
| |
Collapse
|
33
|
Chen J, He BQ, Wang PZ, Yu XY, Zhao QQ, Chen JR, Xiao WJ. Photoinduced, Copper-Catalyzed Radical Cross-Coupling of Cycloketone Oxime Esters, Alkenes, and Terminal Alkynes. Org Lett 2019; 21:4359-4364. [DOI: 10.1021/acs.orglett.9b01529] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jun Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Bin-Qing He
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Peng-Zi Wang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Xiao-Ye Yu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Quan-Qing Zhao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| |
Collapse
|
34
|
He Y, Anand D, Sun Z, Zhou L. Visible-Light-Promoted Redox Neutral γ,γ-Difluoroallylation of Cycloketone Oxime Ethers with Trifluoromethyl Alkenes via C–C and C–F Bond Cleavage. Org Lett 2019; 21:3769-3773. [PMID: 31063391 DOI: 10.1021/acs.orglett.9b01210] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuwei He
- School of Chemistry, Sun Yat-Sen University, 135 Xingang West Road, Guangzhou, 510275, China
- Key Lab of Functional Molecular Engineering of Guangdong Province, Guangzhou, China
| | - Devireddy Anand
- School of Chemistry, Sun Yat-Sen University, 135 Xingang West Road, Guangzhou, 510275, China
| | - Zhengchang Sun
- School of Chemistry, Sun Yat-Sen University, 135 Xingang West Road, Guangzhou, 510275, China
| | - Lei Zhou
- School of Chemistry, Sun Yat-Sen University, 135 Xingang West Road, Guangzhou, 510275, China
| |
Collapse
|
35
|
Zhang W, Pan YL, Yang C, Li X, Wang B. Ring-opening C(sp3)–C coupling of cyclobutanone oxime esters for the preparation of cyanoalkyl containing heterocycles enabled by photocatalysis. Org Chem Front 2019. [DOI: 10.1039/c9qo00625g] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A ring-opening C(sp3)–C coupling of cyclobutanone oxime esters for the preparation of cyanoalkyl containing heterocycles was realized under visible-light or sunlight irradiation.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Elemento-organic Chemistry
- College of chemistry
- Nankai University
- Tianjin 300071
- China
| | - Yu-Liang Pan
- State Key Laboratory of Elemento-organic Chemistry
- College of chemistry
- Nankai University
- Tianjin 300071
- China
| | - Chen Yang
- State Key Laboratory of Elemento-organic Chemistry
- College of chemistry
- Nankai University
- Tianjin 300071
- China
| | - Xin Li
- State Key Laboratory of Elemento-organic Chemistry
- College of chemistry
- Nankai University
- Tianjin 300071
- China
| | - Bin Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
| |
Collapse
|
36
|
Tian L, Gao S, Wang R, Li Y, Tang C, Shi L, Fu J. Copper-catalyzed ring-opening C(sp3)–N coupling of cycloketone oxime esters: access to 1°, 2° and 3° alkyl amines. Chem Commun (Camb) 2019; 55:5347-5350. [DOI: 10.1039/c9cc02030f] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Access to 1°, 2° and 3° alkyl amines through copper-catalyzed C(sp3)–N coupling of cycloketone oxime esters was realized.
Collapse
Affiliation(s)
- Li Tian
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Shuangqiu Gao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Rui Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Yang Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Chunlin Tang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Lili Shi
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen 518055
- China
| | - Junkai Fu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| |
Collapse
|
37
|
Yuan Y, Dong WH, Gao XS, Xie XM, Zhang ZG. Visible-light-induced radical cascade cyclization of oxime esters and aryl isonitriles: synthesis of cyclopenta[b]quinoxalines. Chem Commun (Camb) 2019; 55:11900-11903. [DOI: 10.1039/c9cc05655f] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The in situ-formed nitrile produced by oxime esters was taken into a visible-light-induced radical cascade cyclization with aryl isonitriles.
Collapse
Affiliation(s)
- Yao Yuan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Wu-Heng Dong
- College of Medicine
- Guangxi University of Science and Technology
- Liuzhou
- China
| | - Xiao-Shuang Gao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Xiao-Min Xie
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Zhao-Guo Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|