1
|
Allen MC, Karplus PA, Mehl RA, Cooley RB. Genetic Encoding of Phosphorylated Amino Acids into Proteins. Chem Rev 2024; 124:6592-6642. [PMID: 38691379 PMCID: PMC11658404 DOI: 10.1021/acs.chemrev.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Reversible phosphorylation is a fundamental mechanism for controlling protein function. Despite the critical roles phosphorylated proteins play in physiology and disease, our ability to study individual phospho-proteoforms has been hindered by a lack of versatile methods to efficiently generate homogeneous proteins with site-specific phosphoamino acids or with functional mimics that are resistant to phosphatases. Genetic code expansion (GCE) is emerging as a transformative approach to tackle this challenge, allowing direct incorporation of phosphoamino acids into proteins during translation in response to amber stop codons. This genetic programming of phospho-protein synthesis eliminates the reliance on kinase-based or chemical semisynthesis approaches, making it broadly applicable to diverse phospho-proteoforms. In this comprehensive review, we provide a brief introduction to GCE and trace the development of existing GCE technologies for installing phosphoserine, phosphothreonine, phosphotyrosine, and their mimics, discussing both their advantages as well as their limitations. While some of the technologies are still early in their development, others are already robust enough to greatly expand the range of biologically relevant questions that can be addressed. We highlight new discoveries enabled by these GCE approaches, provide practical considerations for the application of technologies by non-GCE experts, and also identify avenues ripe for further development.
Collapse
Affiliation(s)
- Michael C. Allen
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| | - P. Andrew Karplus
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| | - Ryan A. Mehl
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| | - Richard B. Cooley
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| |
Collapse
|
2
|
Liu D, Liu Y, Duan HZ, Chen X, Wang Y, Wang T, Yu Q, Chen YX, Lu Y. Customized synthesis of phosphoprotein bearing phosphoserine or its nonhydrolyzable analog. Synth Syst Biotechnol 2022; 8:69-78. [PMID: 36514487 PMCID: PMC9719085 DOI: 10.1016/j.synbio.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/13/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
Studies on the mechanism of protein phosphorylation and therapeutic interventions of its related molecular processes are limited by the difficulty in the production of purpose-built phosphoproteins harboring site-specific phosphorylated amino acids or their nonhydrolyzable analogs. Here we address this limitation by customizing the cell-free protein synthesis (CFPS) machinery via chassis strain selection and orthogonal translation system (OTS) reconfiguration screening. The suited chassis strains and reconfigured OTS combinations with high orthogonality were consequently picked out for individualized phosphoprotein synthesis. Specifically, we synthesized the sfGFP protein and MEK1 protein with site-specific phosphoserine (O-pSer) or its nonhydrolyzable analog, 2-amino-4-phosphonobutyric acid (C-pSer). This study successfully realized building cell-free systems for site-specific incorporation of phosphonate mimics into the target protein. Our work lays the foundation for developing a highly expansible CFPS platform and the streamlined production of user-defined phosphoproteins, which can facilitate research on the physiological mechanism and potential interference tools toward protein phosphorylation.
Collapse
Affiliation(s)
- Dong Liu
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yingying Liu
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Hua-Zhen Duan
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xinjie Chen
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yanan Wang
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ting Wang
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Qing Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Corresponding author.
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Corresponding author.
| |
Collapse
|
3
|
Ni SF, Huang G, Chen Y, Wright JS, Li M, Dang L. Recent advances in γ-C(sp3)–H bond activation of amides, aliphatic amines, sulfanilamides and amino acids. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Chang R, Liu Y, Zhang Y, Zhang S, Han B, Chen F, Chen Y. Phosphorylated and Phosphonated Low-Complexity Protein Segments for Biomimetic Mineralization and Repair of Tooth Enamel. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103829. [PMID: 34978158 PMCID: PMC8867149 DOI: 10.1002/advs.202103829] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/18/2021] [Indexed: 05/03/2023]
Abstract
Biomimetic mineralization based on self-assembly has made great progress, providing bottom-up strategies for the construction of new organic-inorganic hybrid materials applied in the treatment of hard tissue defects. Herein, inspired by the cooperative effects of key components in biomineralization microenvironments, a new type of biocompatible peptide scaffold based on flexibly self-assembling low-complexity protein segments (LCPSs) containing phosphate or phosphonate groups is developed. These LCPSs can retard the transformation of amorphous calcium phosphate into hydroxyapatite (HAP), leading to merged mineralization structures. Moreover, the application of phosphonated LCPS over phosphorylated LCPS can prevent hydrolysis by phosphatases that are enriched in extracellular mineralization microenvironments. After being coated on the etched tooth enamel, these LCPSs facilitate the growth of HAP to generate new enamel layers comparable to the natural layers and mitigate the adhesion of Streptococcus mutans. In addition, they can effectively stimulate the differentiation pathways of osteoblasts. These results shed light on the potential biomedical applications of two LCPSs in hard tissue repair.
Collapse
Affiliation(s)
- Rong Chang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Yang‐Jia Liu
- Central LaboratoryPeking University Hospital of StomatologyBeijing100081China
| | - Yun‐Lai Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Shi‐Ying Zhang
- Central LaboratoryPeking University Hospital of StomatologyBeijing100081China
| | - Bei‐Bei Han
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Feng Chen
- Central LaboratoryPeking University Hospital of StomatologyBeijing100081China
| | - Yong‐Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| |
Collapse
|
5
|
Antonov AA, Bryliakov KP. Recent progress in catalytic acyloxylation of C(sp
3
)‐H bonds. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Artem A. Antonov
- Department of the Mechanisms of Catalytic Reactions Boreskov Institute of Catalysis Novosibirsk Russia
| | - Konstantin P. Bryliakov
- Department of the Mechanisms of Catalytic Reactions Boreskov Institute of Catalysis Novosibirsk Russia
| |
Collapse
|
6
|
Shabani S, Wu Y, Ryan HG, Hutton CA. Progress and perspectives on directing group-assisted palladium-catalysed C-H functionalisation of amino acids and peptides. Chem Soc Rev 2021; 50:9278-9343. [PMID: 34254063 DOI: 10.1039/d0cs01441a] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peptide modifications can unlock a variety of compounds with structural diversity and abundant biological activity. In nature, peptide modifications, such as functionalisation at the side-chain position of amino acids, are performed using post-translational modification enzymes or incorporation of unnatural amino acids. However, accessing these modifications remains a challenge for organic chemists. During the past decades, selective C-H activation/functionalisation has attracted considerable attention in synthetic organic chemistry as a pathway to peptide modification. Various directing group strategies have been discovered that assist selective C-H activation. In particular, bidentate directing groups that enable tuneable and reversible coordination are now recognised as one of the most efficient methods for the site-selective C-H activation and functionalisation of numerous families of organic compounds. Synthetic peptide chemists have harnessed bidentate directing group strategies for selective functionalisation of the β- and γ-positions of amino acids. This method has been expanded and recognised as an effective device for the late stage macrocyclisation and total synthesis of complex peptide natural products. In this review, we discuss various β-, γ-, and δ-C(sp3)-H bond functionalisation reactions of amino acids for the formation of C-X bonds with the aid of directing groups and their application in late-stage macrocyclisation and the total synthesis of complex peptide natural products.
Collapse
Affiliation(s)
- Sadegh Shabani
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia.
| | | | | | | |
Collapse
|
7
|
Han BB, Pan YC, Li YM, Guo DS, Chen YX. A host-guest ATP responsive strategy for intracellular delivery of phosphopeptides. Chem Commun (Camb) 2021; 56:5512-5515. [PMID: 32296785 DOI: 10.1039/d0cc01800g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a host-guest ATP responsive strategy for efficient intracellular delivery of phosphopeptides, employing a pegylated arginine clustered calix[5]arene nanocarrier system that has great capability of recognizing the phosphate moieties on peptides and penetrating the cell membrane.
Collapse
Affiliation(s)
- Bei-Bei Han
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China and Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Yu-Chen Pan
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.
| | - Yan-Mei Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China and Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Cao H, Li J, Zhang F, Cahard D, Ma J. Asymmetric Synthesis of Chiral Amino Carboxylic‐Phosphonic Acid Derivatives. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hao‐Qiang Cao
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Tianjin 300072 People's Republic of China
| | - Jun‐Kuan Li
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Tianjin 300072 People's Republic of China
| | - Fa‐Guang Zhang
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Tianjin 300072 People's Republic of China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Binhai New City Fuzhou 350207 People's Republic of China
| | - Dominique Cahard
- CNRS UMR 6014 COBRA Normandie Université 76821 Mont Saint Aignan France
| | - Jun‐An Ma
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Tianjin 300072 People's Republic of China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Binhai New City Fuzhou 350207 People's Republic of China
| |
Collapse
|
9
|
Unremitting progresses for phosphoprotein synthesis. Curr Opin Chem Biol 2020; 58:96-111. [PMID: 32889414 DOI: 10.1016/j.cbpa.2020.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 02/03/2023]
Abstract
Phosphorylation, one of the important protein post-translational modifications, is involved in many essential cellular processes. Site-specifical and homogeneous phosphoproteins can be used as probes for elucidating the protein phosphorylation network and as potential therapeutics for interfering their involved biological events. However, the generation of phosphoproteins has been challenging owing to the limitation of chemical synthesis and protein expression systems. Despite the pioneering discoveries in phosphoprotein synthesis, over the past decade, great progresses in this field have also been made to promote the biofunctional exploration of protein phosphorylation largely. Therefore, in this review, we mainly summarize recent advances in phosphoprotein synthesis, which includes five sections: 1) synthesis of the nonhydrolyzable phosphorylated amino acid mimetic building blocks, 2) chemical total and semisynthesis strategy, 3) in-cell and in vitro genetic code expansion strategy, 4) the late-stage modification strategy, 5) nonoxygen phosphoprotein synthesis.
Collapse
|
10
|
Bisht N, Babu SA, Tomar R. Pd(II)‐Catalyzed, Bidentate Directing Group‐aided Alkylation of sp
3
γ‐C−H Bonds: Access to 3‐Alkylated Thiophene/Furan and Benzothiophene/Benzofuran Motifs. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Narendra Bisht
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| | - Srinivasarao Arulananda Babu
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| | - Radha Tomar
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| |
Collapse
|
11
|
Kafarski P. Phosphonopeptides containing free phosphonic groups: recent advances. RSC Adv 2020; 10:25898-25910. [PMID: 35518575 PMCID: PMC9055344 DOI: 10.1039/d0ra04655h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/02/2020] [Indexed: 11/21/2022] Open
Abstract
Phosphonopeptides are mimetics of peptides in which phosphonic acid or related (phosphinic, phosphonous etc.) group replaces either carboxylic acid group present at C-terminus, is located in the peptidyl side chain, or phosphonamidate or phosphinic acid mimics peptide bond. Acting as inhibitors of key enzymes related to variable pathological states they display interesting and useful physiologic activities with potential applications in medicine and agriculture. Since the synthesis and biological properties of peptides containing C-terminal diaryl phosphonates and those with phosphonic fragment replacing peptide bond were comprehensively reviewed, this review concentrate on peptides holding free, unsubstituted phosphonic acid moiety. There are two groups of such mimetics: (i) peptides in which aminophosphonic acid is located at C-terminus of the peptide chain with most of them (including antibiotics isolated from bacteria and fungi) exhibiting antimicrobial activity; (ii) non-hydrolysable analogues of phosphonoamino acids, which are useful tools to study physiologic effects of phosphorylations.
Collapse
Affiliation(s)
- Paweł Kafarski
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-305 Wrocław Poland
| |
Collapse
|