1
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
2
|
Messina MS, Quargnali G, Chang CJ. Activity-Based Sensing for Chemistry-Enabled Biology: Illuminating Principles, Probes, and Prospects for Boronate Reagents for Studying Hydrogen Peroxide. ACS BIO & MED CHEM AU 2022; 2:548-564. [PMID: 36573097 PMCID: PMC9782337 DOI: 10.1021/acsbiomedchemau.2c00052] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
Activity-based sensing (ABS) offers a general approach that exploits chemical reactivity as a method for selective detection and manipulation of biological analytes. Here, we illustrate the value of this chemical platform to enable new biological discovery through a case study in the design and application of ABS reagents for studying hydrogen peroxide (H2O2), a major type of reactive oxygen species (ROS) that regulates a diverse array of vital cellular signaling processes to sustain life. Specifically, we summarize advances in the use of activity-based boronate probes for the detection of H2O2 featuring high molecular selectivity over other ROS, with an emphasis on tailoring designs in chemical structure to promote new biological principles of redox signaling.
Collapse
Affiliation(s)
- Marco S. Messina
- Department
of Chemistry and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Gianluca Quargnali
- Department
of Chemistry and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department
of Chemistry and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Wang Y, Bian Y, Chen X, Su D. Chemiluminescent Probes Based on 1,2-dioxetane Structures For Bioimaging. Chem Asian J 2022; 17:e202200018. [PMID: 35088544 DOI: 10.1002/asia.202200018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/26/2022] [Indexed: 11/06/2022]
Abstract
Chemiluminescent probes based on 1,2-dioxetane scaffold are one of the most sensitive imaging modalities for detecting disease-related biomarkers and can obtain more accurate biological information in cells and in vivo . Due to the elimination of external light excitation, the background autofluorescence problem in fluorescence technology can be effectively avoided, providing ultra-high sensitivity and signal-to-noise ratio for various applications. In this minireview, we highlight a comprehensive but concise overview of activatable 1,2-dioetxane-based chemiluminescent probes by reporting significant advances in accurate detection and bioimaging. The design principles and applications for reactive species, enzymes, and other disease-related biomarkers are systematically discussed and summarized. The challenges and potential prospects of chemiluminescent probes are also discussed to further promote the development of new chemiluminescence methods for biological analysis and diagnosis.
Collapse
Affiliation(s)
- Yaling Wang
- Beijing University of Technology, Department of chemistry and biology, CHINA
| | - Yongning Bian
- Beijing University of Technology, Department of chemistry and biology, CHINA
| | - Xueqian Chen
- Beijing University of Technology, Department of chemistry and biology, CHINA
| | - Dongdong Su
- Beijing University of Technology, Department of Chemistry and Chemical Engineering, 100 Pingleyuan, Chaoyang District, 100124, Beijing, CHINA
| |
Collapse
|
4
|
Shelef O, Gnaim S, Shabat D. Self-Immolative Polymers: An Emerging Class of Degradable Materials with Distinct Disassembly Profiles. J Am Chem Soc 2021; 143:21177-21188. [PMID: 34898203 PMCID: PMC8704185 DOI: 10.1021/jacs.1c11410] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 12/16/2022]
Abstract
Self-immolative polymers are an emerging class of macromolecules with distinct disassembly profiles that set them apart from other general degradable materials. These polymers are programmed to disassemble spontaneously from head to tail, through a domino-like fragmentation, upon response to extremal stimuli. In the time since we first reported this unique type of molecule, several groups around the world have developed new, creative molecular structures that perform analogously to our pioneering polymers. Self-immolative polymers are now widely recognized as an important class of stimuli-responsive materials for a wide range of applications such as signal amplification, biosensing, drug delivery, and materials science. The quinone-methide elimination was shown to be an effective tool to achieve rapid domino-like fragmentation of polymeric molecules. Thus, numerous applications of self-immolative polymers are based on this disassembly chemistry. Although several other fragmentation reactions achieved the function requested for sequential disassembly, we predominantly focused in this Perspective on examples of self-immolative polymers that disassemble through the quinone-methide elimination. Selected examples of self-immolative polymers that disassembled through other chemistries are briefly described. The growing demand for stimuli-responsive degradable materials with novel molecular backbones and enhanced properties guarantees the future interest of the scientific community in this unique class of polymers.
Collapse
Affiliation(s)
| | | | - Doron Shabat
- School of Chemistry, Raymond
and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
5
|
Das S, Ihssen J, Wick L, Spitz U, Shabat D. Chemiluminescent Carbapenem‐Based Molecular Probe for Detection of Carbapenemase Activity in Live Bacteria. Chemistry 2020; 26:3647-3652. [DOI: 10.1002/chem.202000217] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Sayantan Das
- School of Chemistry, Faculty of Exact SciencesTel Aviv University Tel Aviv 69978 Israel
| | - Julian Ihssen
- BIOSYNTH CARBOSYNTH Rietlistrasse 4, Postfach 125 9422 Staad Switzerland
| | - Lukas Wick
- BIOSYNTH CARBOSYNTH Rietlistrasse 4, Postfach 125 9422 Staad Switzerland
| | - Urs Spitz
- BIOSYNTH CARBOSYNTH Rietlistrasse 4, Postfach 125 9422 Staad Switzerland
| | - Doron Shabat
- School of Chemistry, Faculty of Exact SciencesTel Aviv University Tel Aviv 69978 Israel
| |
Collapse
|
6
|
Gnaim S, Shabat D. Activity-Based Optical Sensing Enabled by Self-Immolative Scaffolds: Monitoring of Release Events by Fluorescence or Chemiluminescence Output. Acc Chem Res 2019; 52:2806-2817. [PMID: 31483607 DOI: 10.1021/acs.accounts.9b00338] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Functional molecular scaffolds comprised of self-immolative adaptors are being used in widespread applications in the fields of enzyme activity analyses, signal amplification, and bioimaging. Optically detected chemical probes are very promising compounds for sensing and diagnosis, since they present several attractive features such as high specificity, low detection limits, fast response times, and technical simplicity. During the last two decades, we have developed several distinct molecular scaffolds that harness the self-immolative disassembly feature of these adaptors to amplify chromogenic output for diagnosis and drug delivery applications. In order to study the molecular behavior of the various amplification systems, an optical output, used to monitor the progress of the disassembly pattern, was required. Therefore, over the course of our research, diverse molecular scaffolds that produce an optical signal in response to a disassembly step, were evaluated. These optically active scaffolds have been incorporated into self-immolative dendrimers and self-immolative polymers to implement unique disassembly properties that result with linear and exponential signal amplification capabilities. In addition, some scaffolds, aimed for linker technology, were used in delivery systems to monitor release of drug molecules. The optical signal used to monitor the release event could be produced by analysis of reporter molecules with chromogenic or fluorogenic properties. Recently, we have also developed molecular scaffolds modified to produce a chemiluminescent signal to monitor the self-immolative disassembly step. The main advantage of these scaffolds over others is the use of chemiluminescence as an output signal. It is well-known that chemiluminescence is considered as one the most sensitive diagnostic methods due to its high signal-to-noise ratio. The unique structures of the self-immolative chemiluminescence scaffolds have been used in the design of three different distinctive concepts: self-immolative chemiluminescence polymers, auto-inductive amplification systems with chemiluminescence signal and monitoring of drug release by a chemiluminescence output. Furthermore, we reported the design and synthesis of the first theranostic prodrug for the monitoring of drug release achieved by a chemiluminescence mode of action. Quinone-methide elimination has proven to serve as a valuable functional tool for composing molecular scaffolds with self-immolative capabilities. Such scaffolds function as molecular adaptors that can almost simultaneously release a target molecule with an accompanied emission of a light signal that is used to monitor the release event. We anticipate that these self-immolative scaffolds will continue to find utility as functional linkers in various chemical and biological research areas such as drug delivery, theranostic applications, and as molecular sensors with signal amplification.
Collapse
Affiliation(s)
- Samer Gnaim
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978 Israel
| | - Doron Shabat
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978 Israel
| |
Collapse
|
7
|
Roth‐Konforti M, Green O, Hupfeld M, Fieseler L, Heinrich N, Ihssen J, Vorberg R, Wick L, Spitz U, Shabat D. Ultrasensitive Detection of
Salmonella
and
Listeria monocytogenes
by Small‐Molecule Chemiluminescence Probes. Angew Chem Int Ed Engl 2019; 58:10361-10367. [DOI: 10.1002/anie.201904719] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Michal Roth‐Konforti
- Department of Organic ChemistrySchool of Chemistry, Faculty of Exact SciencesTel Aviv University Tel Aviv 69978 Israel
| | - Ori Green
- Department of Organic ChemistrySchool of Chemistry, Faculty of Exact SciencesTel Aviv University Tel Aviv 69978 Israel
| | | | - Lars Fieseler
- Institute of Food and Beverage InnovationZurich University of Applied Sciences Wädenswil Switzerland
| | - Nadine Heinrich
- Institute of Food and Beverage InnovationZurich University of Applied Sciences Wädenswil Switzerland
| | - Julian Ihssen
- BIOSYNTH Rietlistr. 4, Postfach 125 9422 Staad Switzerland
| | | | - Lukas Wick
- BIOSYNTH Rietlistr. 4, Postfach 125 9422 Staad Switzerland
| | - Urs Spitz
- BIOSYNTH Rietlistr. 4, Postfach 125 9422 Staad Switzerland
| | - Doron Shabat
- Department of Organic ChemistrySchool of Chemistry, Faculty of Exact SciencesTel Aviv University Tel Aviv 69978 Israel
| |
Collapse
|
8
|
Hananya N, Shabat D. Recent Advances and Challenges in Luminescent Imaging: Bright Outlook for Chemiluminescence of Dioxetanes in Water. ACS CENTRAL SCIENCE 2019; 5:949-959. [PMID: 31263754 PMCID: PMC6598152 DOI: 10.1021/acscentsci.9b00372] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Indexed: 05/11/2023]
Abstract
Chemiluminescence is gradually being recognized as a powerful tool for sensing and imaging. Most known light-emitting compounds undergo chemiexcitation through spontaneous decomposition of cyclic peroxide moieties. A ground-breaking milestone in the chemistry of such compounds was achieved 30 years ago with the discovery of triggerable dioxetanes by Schaap's group. Our group has recently developed a distinct methodology to significantly improve the light emission efficiency of such phenoxy-dioxetane luminophores under physiological conditions. Introduction of an electron-withdrawing substituent at the ortho position of the phenoxy-dioxetane resulted in an approximately 3000-fold increase of the chemiluminescence quantum yield in aqueous media. Furthermore, we discovered that the emission wavelength and the kinetics of the chemiexcitation could be determined by the electronic nature of the substituent incorporated on the dioxetane luminophore. This recent development has provided scientists with new powerful chemiluminophores that can act as single-component probes for in vivo and in vitro detection and imaging of various analytes and enzymes. This outlook describes the recent progress toward applications of synthetic chemiluminescence luminophores suitable for sensing and imaging in aqueous environments.
Collapse
Affiliation(s)
| | - Doron Shabat
- Tel: +972 (0) 3 640 8340. Fax: +972 (0) 3 640 9293.
E-mail:
| |
Collapse
|
9
|
Roth‐Konforti M, Green O, Hupfeld M, Fieseler L, Heinrich N, Ihssen J, Vorberg R, Wick L, Spitz U, Shabat D. Ultrasensitive Detection ofSalmonellaandListeria monocytogenesby Small‐Molecule Chemiluminescence Probes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904719] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Michal Roth‐Konforti
- Department of Organic ChemistrySchool of Chemistry, Faculty of Exact SciencesTel Aviv University Tel Aviv 69978 Israel
| | - Ori Green
- Department of Organic ChemistrySchool of Chemistry, Faculty of Exact SciencesTel Aviv University Tel Aviv 69978 Israel
| | | | - Lars Fieseler
- Institute of Food and Beverage InnovationZurich University of Applied Sciences Wädenswil Switzerland
| | - Nadine Heinrich
- Institute of Food and Beverage InnovationZurich University of Applied Sciences Wädenswil Switzerland
| | - Julian Ihssen
- BIOSYNTH Rietlistr. 4, Postfach 125 9422 Staad Switzerland
| | | | - Lukas Wick
- BIOSYNTH Rietlistr. 4, Postfach 125 9422 Staad Switzerland
| | - Urs Spitz
- BIOSYNTH Rietlistr. 4, Postfach 125 9422 Staad Switzerland
| | - Doron Shabat
- Department of Organic ChemistrySchool of Chemistry, Faculty of Exact SciencesTel Aviv University Tel Aviv 69978 Israel
| |
Collapse
|