1
|
Gomes DC, Medeiros TS, Alves Pereira EL, da Silva JFO, de Freitas Oliveira JW, Fernandes-Pedrosa MDF, de Sousa da Silva M, da Silva-Júnior AA. From Benznidazole to New Drugs: Nanotechnology Contribution in Chagas Disease. Int J Mol Sci 2023; 24:13778. [PMID: 37762080 PMCID: PMC10530915 DOI: 10.3390/ijms241813778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 09/29/2023] Open
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan Trypanosoma cruzi. Benznidazole and nifurtimox are the two approved drugs for their treatment, but both drugs present side effects and efficacy problems, especially in the chronic phase of this disease. Therefore, new molecules have been tested with promising results aiming for strategic targeting action against T. cruzi. Several studies involve in vitro screening, but a considerable number of in vivo studies describe drug bioavailability increment, drug stability, toxicity assessment, and mainly the efficacy of new drugs and formulations. In this context, new drug delivery systems, such as nanotechnology systems, have been developed for these purposes. Some nanocarriers are able to interact with the immune system of the vertebrate host, modulating the immune response to the elimination of pathogenic microorganisms. In this overview of nanotechnology-based delivery strategies for established and new antichagasic agents, different strategies, and limitations of a wide class of nanocarriers are explored, as new perspectives in the treatment and monitoring of Chagas disease.
Collapse
Affiliation(s)
- Daniele Cavalcante Gomes
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - Thayse Silva Medeiros
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - Eron Lincoln Alves Pereira
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - João Felipe Oliveira da Silva
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - Johny W. de Freitas Oliveira
- Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Centre of Health Sciences, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (J.W.d.F.O.); (M.d.S.d.S.)
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - Marcelo de Sousa da Silva
- Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Centre of Health Sciences, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (J.W.d.F.O.); (M.d.S.d.S.)
| | - Arnóbio Antônio da Silva-Júnior
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| |
Collapse
|
2
|
Wu JJ, Zhang J, Xia CY, Ding K, Li XX, Pan XG, Xu JK, He J, Zhang WK. Hypericin: A natural anthraquinone as promising therapeutic agent. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154654. [PMID: 36689857 DOI: 10.1016/j.phymed.2023.154654] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Hypericin is a prominent secondary metabolite mainly existing in genus Hypericum. It has become a research focus for a quiet long time owing to its extensively pharmacological activities especially the anti-cancer, anti-bacterial, anti-viral and neuroprotective effects. This review concentrated on summarizing and analyzing the existing studies of hypericin in a comprehensive perspective. METHODS The literature with desired information about hypericin published after 2010 was gained from electronic databases including PubMed, SciFinder, Science Direct, Web of Science, China National Knowledge Infrastructure databases and Wan Fang DATA. RESULTS According to extensive preclinical and clinical studies conducted on the hypericin, an organized and comprehensive summary of the natural and artificial sources, strategies for improving the bioactivities, pharmacological activities, drug combination of hypericin was presented to explore the future therapeutic potential of this active compound. CONCLUSIONS Overall, this review offered a theoretical guidance for the follow-up research of hypericin. However, the pharmacological mechanisms, pharmacokinetics and structure activity relationship of hypericin should be further studied in future research.
Collapse
Affiliation(s)
- Jing-Jing Wu
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jia Zhang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cong-Yuan Xia
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Kang Ding
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xin-Xin Li
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue-Ge Pan
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Wei-Ku Zhang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
3
|
Wang D, Kuzma ML, Tan X, He TC, Dong C, Liu Z, Yang J. Phototherapy and optical waveguides for the treatment of infection. Adv Drug Deliv Rev 2021; 179:114036. [PMID: 34740763 PMCID: PMC8665112 DOI: 10.1016/j.addr.2021.114036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/11/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023]
Abstract
With rapid emergence of multi-drug resistant microbes, it is imperative to seek alternative means for infection control. Optical waveguides are an auspicious delivery method for precise administration of phototherapy. Studies have shown that phototherapy is promising in fighting against a myriad of infectious pathogens (i.e. viruses, bacteria, fungi, and protozoa) including biofilm-forming species and drug-resistant strains while evading treatment resistance. When administered via optical waveguides, phototherapy can treat both superficial and deep-tissue infections while minimizing off-site effects that afflict conventional phototherapy and pharmacotherapy. Despite great therapeutic potential, exact mechanisms, materials, and fabrication designs to optimize this promising treatment option are underexplored. This review outlines principles and applications of phototherapy and optical waveguides for infection control. Research advances, challenges, and outlook regarding this delivery system are rigorously discussed in a hope to inspire future developments of optical waveguide-mediated phototherapy for the management of infection and beyond.
Collapse
Affiliation(s)
- Dingbowen Wang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michelle Laurel Kuzma
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xinyu Tan
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Academy of Orthopedics, Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510280, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Cheng Dong
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zhiwen Liu
- Department of Electrical Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
4
|
Varzandeh M, Mohammadinejad R, Esmaeilzadeh-Salestani K, Dehshahri A, Zarrabi A, Aghaei-Afshar A. Photodynamic therapy for leishmaniasis: Recent advances and future trends. Photodiagnosis Photodyn Ther 2021; 36:102609. [PMID: 34728420 DOI: 10.1016/j.pdpdt.2021.102609] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/15/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023]
Abstract
Leishmaniasis has infected more than 12 million people worldwide. This neglected tropical disease, causing 20,000-30,000 deaths per year, is a global health problem. The emergence of resistant parasites and serious side effects of conventional therapies has led to the search for less toxic and non-invasive alternative treatments. Photodynamic therapy is a promising therapeutic strategy to produce reactive oxygen species for the treatment of leishmaniasis. In this regard, natural and synthetic photosensitizers such as curcumin, hypericin, 5-aminolevulinic acid, phthalocyanines, phenothiazines, porphyrins, chlorins and nanoparticles have been applied. In this review, the recent advances on using photodynamic therapy for treating Leishmania species have been reviewed.
Collapse
Affiliation(s)
- Mohammad Varzandeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Keyvan Esmaeilzadeh-Salestani
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R.Kreutzwaldi 1, EE51014 Tartu, Estonia
| | - Ali Dehshahri
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34485 Istanbul, Turkey
| | - Abbas Aghaei-Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
5
|
Conrado PCV, Sakita KM, Arita GS, Galinari CB, Gonçalves RS, Lopes LDG, Lonardoni MVC, Teixeira JJV, Bonfim-Mendonça PS, Kioshima ES. A systematic review of photodynamic therapy as an antiviral treatment: Potential guidance for dealing with SARS-CoV-2. Photodiagnosis Photodyn Ther 2021; 34:102221. [PMID: 33601001 PMCID: PMC7883714 DOI: 10.1016/j.pdpdt.2021.102221] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND SARS-CoV-2, which causes the coronavirus disease (COVID-19), presents high rates of morbidity and mortality around the world. The search to eliminate SARS-CoV-2 is ongoing and urgent. This systematic review seeks to assess whether photodynamic therapy (PDT) could be effective in SARS-CoV-2 inactivation. METHODS The focus question was: Can photodynamic therapy be used as potential guidance for dealing with SARS-CoV-2?". A literature search, according to PRISMA statements, was conducted in the electronic databases PubMed, EMBASE, SCOPUS, Web of Science, LILACS, and Google Scholar. Studies published from January 2004 to June 2020 were analyzed. In vitro and in vivo studies were included that evaluated the effect of PDT mediated by several photosensitizers on RNA and DNA enveloped and non-enveloped viruses. RESULTS From 27 selected manuscripts, 26 publications used in vitro studies, 24 were exclusively in vitro, and two had in vitro/in vivo parts. Only one analyzed publication was exclusively in vivo. Meta-analysis studies were unfeasible due to heterogeneity of the data. The risk of bias was analyzed in all studies. CONCLUSION The in vitro and in vivo studies selected in this systematic review indicated that PDT is capable of photoinactivating enveloped and non-enveloped DNA and RNA viruses, suggesting that PDT can potentially photoinactivate SARS-CoV-2.
Collapse
Affiliation(s)
- Pollyanna C V Conrado
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil
| | - Karina M Sakita
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil
| | - Glaucia S Arita
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil
| | - Camila B Galinari
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil
| | | | - Luciana D G Lopes
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil
| | - Maria V C Lonardoni
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil
| | - Jorge J V Teixeira
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil
| | | | - Erika S Kioshima
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil.
| |
Collapse
|
6
|
Amanda Pedroso de Morais F, Sonchini Gonçalves R, Souza Campanholi K, Martins de França B, Augusto Capeloto O, Lazarin-Bidoia D, Bento Balbinot R, Vataru Nakamura C, Carlos Malacarne L, Caetano W, Hioka N. Photophysical characterization of Hypericin-loaded in micellar, liposomal and copolymer-lipid nanostructures based F127 and DPPC liposomes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119173. [PMID: 33316657 DOI: 10.1016/j.saa.2020.119173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/25/2020] [Accepted: 10/31/2020] [Indexed: 05/22/2023]
Abstract
Hypericin (Hy) compound presents a high photoactivity in photodynamic therapy (PDT), photodiagnosis and theranostics applications. The maintenance of this compound in monomeric form could undermine the potential benefits of its photophysical and photodynamic activity. In this study, we demonstrated that the Hy formulated in a system based on the use of the F127 copolymer and the 1,2-dipalmitoyl-sn-3-glycerol-phosphatidylcholine (DPPC) as micelles, liposomal vesicles and Copolymer-Lipid coated systems, have improved its photophysical properties for many clinical modalities. Based on the results of the triplet state lifetime values (τt), the singlet oxygen quantum yield (ΦΔ1O2), the fluorescence lifetime (τF) and the fluorescence quantum yield (ΦF), all Hy formulations had its photophysical properties described in different models of drug delivery systems (DDS). In addition, the transient spectra profile of those formulations was unaffected by the Hy incorporation process, except for the liposomal system, which demonstrated to be the less stable one by flash photolysis technique. The cytotoxic effects of those formulations were also investigated for CaCo-2 and HaCat cells line. The cytotoxic concentrations for 50% (CC50) were 0.56, 1.05, 1.33 and 4.80 µmol L-1 for Copolymer-Lipid/Hy, DPPC/Hy, F127/Hy and ethanol/Hy for CaCo-2 cells, respectively, and 0.69, 2.02, 1.45 and 1.16 µmol L-1 for Copolymer-Lipid/Hy, DPPC/Hy, F127/Hy and ethanol/Hy for HaCat cells, respectively. The F127 copolymer had a significant role in many photophysical parameters determined for Copolymer-Lipid/Hy coated system. Although all those formulations had shown satisfactory results, Copolymer-Lipid/Hy proved to be superior in many aspects, being the most promising formulation for PDT, photodiagnosis and theranostics applications.
Collapse
Affiliation(s)
| | - Renato Sonchini Gonçalves
- Department of Chemistry, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Katieli Souza Campanholi
- Department of Chemistry, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Bruna Martins de França
- Department of Chemistry, Federal University of Rio de Janeiro, 149 Athos da Silveira Ramos Ave., 21941-909 Rio de Janeiro, RJ, Brazil
| | - Otávio Augusto Capeloto
- Department of Physics, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Danielle Lazarin-Bidoia
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Rodolfo Bento Balbinot
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Celso Vataru Nakamura
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Luis Carlos Malacarne
- Department of Physics, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Noboru Hioka
- Department of Chemistry, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| |
Collapse
|
7
|
da Silva-Junior RC, Campanholi KDSS, de Morais FAP, Pozza MSDS, de Castro-Hoshino LV, Baesso ML, da Silva JB, Bruschi ML, Caetano W. Photothermal Stimuli-Responsive Hydrogel Containing Safranine for Mastitis Treatment in Veterinary Using Phototherapy. ACS APPLIED BIO MATERIALS 2020. [DOI: 10.1021/acsabm.0c01143] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Muraca G, Berti IR, Sbaraglini ML, Fávaro WJ, Durán N, Castro GR, Talevi A. Trypanosomatid-Caused Conditions: State of the Art of Therapeutics and Potential Applications of Lipid-Based Nanocarriers. Front Chem 2020; 8:601151. [PMID: 33324615 PMCID: PMC7726426 DOI: 10.3389/fchem.2020.601151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
Trypanosomatid-caused conditions (African trypanosomiasis, Chagas disease, and leishmaniasis) are neglected tropical infectious diseases that mainly affect socioeconomically vulnerable populations. The available therapeutics display substantial limitations, among them limited efficacy, safety issues, drug resistance, and, in some cases, inconvenient routes of administration, which made the scenarios with insufficient health infrastructure settings inconvenient. Pharmaceutical nanocarriers may provide solutions to some of these obstacles, improving the efficacy-safety balance and tolerability to therapeutic interventions. Here, we overview the state of the art of therapeutics for trypanosomatid-caused diseases (including approved drugs and drugs undergoing clinical trials) and the literature on nanolipid pharmaceutical carriers encapsulating approved and non-approved drugs for these diseases. Numerous studies have focused on the obtention and preclinical assessment of lipid nanocarriers, particularly those addressing the two currently most challenging trypanosomatid-caused diseases, Chagas disease, and leishmaniasis. In general, in vitro and in vivo studies suggest that delivering the drugs using such type of nanocarriers could improve the efficacy-safety balance, diminishing cytotoxicity and organ toxicity, especially in leishmaniasis. This constitutes a very relevant outcome, as it opens the possibility to extended treatment regimens and improved compliance. Despite these advances, last-generation nanosystems, such as targeted nanocarriers and hybrid systems, have still not been extensively explored in the field of trypanosomatid-caused conditions and represent promising opportunities for future developments. The potential use of nanotechnology in extended, well-tolerated drug regimens is particularly interesting in the light of recent descriptions of quiescent/dormant stages of Leishmania and Trypanosoma cruzi, which have been linked to therapeutic failure.
Collapse
Affiliation(s)
- Giuliana Muraca
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
- Administración Nacional de Medicamentos, Alimentos y Tecnología Médica (ANMAT), Buenos Aires, Argentina
| | - Ignacio Rivero Berti
- Laboratorio de Nanobiomateriales, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), La Plata, Argentina
| | - María L. Sbaraglini
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
| | - Wagner J. Fávaro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Nelson Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Nanomedicine Research Unit (Nanomed), Federal University of ABC (UFABC), Santo André, Brazil
| | - Guillermo R. Castro
- Laboratorio de Nanobiomateriales, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), La Plata, Argentina
| | - Alan Talevi
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
| |
Collapse
|
9
|
de Morais FAP, Gonçalves RS, Vilsinski BH, Lazarin-Bidóia D, Balbinot RB, Tsubone TM, Brunaldi K, Nakamura CV, Hioka N, Caetano W. Hypericin photodynamic activity in DPPC liposomes - part II: stability and application in melanoma B16-F10 cancer cells. Photochem Photobiol Sci 2020; 19:620-630. [PMID: 32248218 DOI: 10.1039/c9pp00284g] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypericin (Hyp) is considered a promising photosensitizer for Photodynamic Therapy (PDT), due to its high hydrophobicity, affinity for cell membranes, low toxicity and high photooxidation activity. In this study, Hyp photophysical properties and photodynamic activity against melanoma B16-F10 cells were optimized using DPPC liposomes (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) as a drug delivery system. This nanoparticle is used as a cell membrane biomimetic model and solubilizes hydrophobic drugs. Hyp oxygen singlet lifetime (τ) in DPPC was approximately two-fold larger than that in P-123 micelles (Pluronic™ surfactants), reflecting a more hydrophobic environment provided by the DPPC liposome. On the other hand, singlet oxygen quantum yield values (ΦΔ1O2) in DPPC and P-123 were similar; Hyp molecules were preserved as monomers. The Hyp/DPPC liposome aqueous dispersion was stable during fluorescence emission and the liposome diameter remained stable for at least five days at 30 °C. However, the liposomes collapsed after the lyophilization/rehydration process, which was resolved by adding the lyoprotectant Trehalose to the liposome dispersion before lyophilization. Cell viability of the Hyp/DPPC formulation was assessed against healthy HaCat cells and high-metastatic melanoma B16-F10 cells. Hyp incorporated into the DPPC carrier presented a higher selectivity index than the Hyp sample previously solubilized in ethanol under the illumination effect. Moreover, the IC50 was lower for Hyp in DPPC than for Hyp pre-solubilized in ethanol. These results indicate the potential of the formulation of Hyp/DPPC for future biomedical applications in PDT treatment.
Collapse
Affiliation(s)
| | | | | | - Danielle Lazarin-Bidóia
- Universidade Estadual de Maringá, Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, Department of Health Sciences, 87020-900, Maringá, Paraná, Brazil
| | - Rodolfo Bento Balbinot
- Universidade Estadual de Maringá, Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, Department of Health Sciences, 87020-900, Maringá, Paraná, Brazil
| | - Tayana Mazin Tsubone
- Universidade Federal de Uberlandia, Institute of Chemistry, 38400-902, Minas, Gerais, Brazil
| | - Kellen Brunaldi
- Physiological Sciences Department, Universidade Estadual de Maringá, 87020-900, Maringá, Paraná, Brazil
| | - Celso Vatatu Nakamura
- Universidade Estadual de Maringá, Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, Department of Health Sciences, 87020-900, Maringá, Paraná, Brazil
| | - Noboru Hioka
- Chemistry Department, Universidade Estadual de Maringá, 87020-900, Maringá, Paraná, Brazil
| | - Wilker Caetano
- Chemistry Department, Universidade Estadual de Maringá, 87020-900, Maringá, Paraná, Brazil
| |
Collapse
|
10
|
Quijia Quezada C, Azevedo CS, Charneau S, Santana JM, Chorilli M, Carneiro MB, Bastos IMD. Advances in nanocarriers as drug delivery systems in Chagas disease. Int J Nanomedicine 2019; 14:6407-6424. [PMID: 31496694 PMCID: PMC6691952 DOI: 10.2147/ijn.s206109] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
Chagas disease is one of the most important public health problems in Latin America due to its high mortality and morbidity levels. There is no effective treatment for this disease since drugs are usually toxic with low bioavailability. Serious efforts to achieve disease control and eventual eradication have been unsuccessful to date, emphasizing the need for rapid diagnosis, drug development, and a reliable vaccine. Novel systems for drug and vaccine administration based on nanocarriers represent a promising avenue for Chagas disease treatment. Nanoparticulate systems can reduce toxicity, and increase the efficacy and bioavailability of active compounds by prolonging release, and therefore improve the therapeutic index. Moreover, nanoparticles are able to interact with the host's immune system, modulating the immune response to favour the elimination of pathogenic microorganisms. In addition, new advances in diagnostic assays, such as nanobiosensors, are beneficial in that they enable precise identification of the pathogen. In this review, we provide an overview of the strategies and nanocarrier-based delivery systems for antichagasic agents, such as liposomes, micelles, nanoemulsions, polymeric and non-polymeric nanoparticles. We address recent progress, with a particular focus on the advances of nanovaccines and nanodiagnostics, exploring new perspectives on Chagas disease treatment.
Collapse
Affiliation(s)
- Christian Quijia Quezada
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
- Department of Drugs and Medicines, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Clênia S Azevedo
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| | - Sébastien Charneau
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| | - Jaime M Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marcella B Carneiro
- Electron Microscopy Laboratory, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| | - Izabela Marques Dourado Bastos
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| |
Collapse
|
11
|
Enumo A, Pereira CID, Parize AL. Temperature Evaluation of Curcumin Keto–Enolic Kinetics and Its Interaction with Two Pluronic Copolymers. J Phys Chem B 2019; 123:5641-5650. [DOI: 10.1021/acs.jpcb.9b04150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Adalberto Enumo
- Polimat, Grupo de Estudos em Materiais Poliméricos, Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | | | - Alexandre Luis Parize
- Polimat, Grupo de Estudos em Materiais Poliméricos, Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| |
Collapse
|
12
|
Sakita KM, Conrado PCV, Faria DR, Arita GS, Capoci IRG, Rodrigues-Vendramini FAV, Pieralisi N, Cesar GB, Gonçalves RS, Caetano W, Hioka N, Kioshima ES, Svidzinski TIE, Bonfim-Mendonça PS. Copolymeric micelles as efficient inert nanocarrier for hypericin in the photodynamic inactivation of Candida species. Future Microbiol 2019; 14:519-531. [DOI: 10.2217/fmb-2018-0304] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate the efficacy of photodynamic inactivation (PDI) mediated by hypericin encapsulated in P-123 copolymeric micelles (P123-Hyp) alone and in combination with fluconazole (FLU) against planktonic cells and biofilm formation of Candida species Materials & methods: PDI was performed using P123-Hyp and an LED device with irradiance of 3.0 mW/cm2 . Results: Most of isolates (70%) were completely inhibited with concentrations up to 2.0 μmol/l of HYP and light fluence of 16.2 J/cm2. FLU-resistant strains had synergic effect with P123-HYP-PDI and FLU. The biofilm formation was inhibited in all species, in additional the changes in Candida morphology observed by scanning electron microscopy. Conclusion: P123-Hyp-PDI is a promising option to treat fungal infections and medical devices to prevent biofilm formation and fungal spread.
Collapse
Affiliation(s)
- Karina M Sakita
- Department of Analysis Clinics & Biomedicine, State University of Maringá, Paraná, Brazil
| | - Pollyanna CV Conrado
- Department of Analysis Clinics & Biomedicine, State University of Maringá, Paraná, Brazil
| | - Daniella R Faria
- Department of Analysis Clinics & Biomedicine, State University of Maringá, Paraná, Brazil
| | - Glaucia S Arita
- Department of Analysis Clinics & Biomedicine, State University of Maringá, Paraná, Brazil
| | - Isis RG Capoci
- Department of Analysis Clinics & Biomedicine, State University of Maringá, Paraná, Brazil
| | | | - Neli Pieralisi
- Department of Odontology, State University of Maringá, Paraná, Brazil
| | - Gabriel B Cesar
- Department of Chemistry, State University of Maringá, Paraná, Brazil
| | | | - Wilker Caetano
- Department of Chemistry, State University of Maringá, Paraná, Brazil
| | - Noboru Hioka
- Department of Chemistry, State University of Maringá, Paraná, Brazil
| | - Erika S Kioshima
- Department of Analysis Clinics & Biomedicine, State University of Maringá, Paraná, Brazil
| | | | | |
Collapse
|