1
|
Höppener C, Elter JK, Schacher FH, Deckert V. Inside Block Copolymer Micelles-Tracing Interfacial Influences on Crosslinking Efficiency in Nanoscale Confined Spaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206451. [PMID: 36806886 DOI: 10.1002/smll.202206451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/22/2023] [Indexed: 05/18/2023]
Abstract
Recently, several studies have demonstrated the excellent capabilities of tip-enhanced Raman spectroscopyfor in-depth investigations of structural properties of matter with unprecedented resolution and chemical specificity. These capabilities are utilized here to study the internal structure of core-crosslinked micelles, which are formed by self-assembly of the diblock terpolymer poly(ethylene oxide)-block-poly(furfuryl glycidylether-co-tert-butylglycidyl ether). Supplementing force-volume atomic force microscopy experiments address additionally the nanomechanical properties. Particularly, TERS enables investigating the underlying principles influencing the homogeneity and efficiency of the Diels-Alder core-crosslinking process in the confined hydrophobic core. While the central core region is homogenously crosslinked, a breakdown of the crosslinking reaction is observed in the core-corona interfacial region. The results corroborate that a strong crosslinking efficiency is directly correlated to the formation of a mixed zone of the glycidyl ether and PEO corona blocks reaching ≈5 nm into the core region. Concomitantly a strong exclusion of the encapsulated bismaleimide crosslinker from the interfacial region is observed. It is conceivable that a changed structure, chemical composition and altered nanomechanical properties of this interfacial region may also influence the crosslinking efficiency across the entire core region by a modification of the solubility of the crosslinker in the interfacial core-corona region.
Collapse
Affiliation(s)
- Christiane Höppener
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Straße 9, D-07745, Jena, Germany
| | - Johanna K Elter
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Lessingstraße 8, D-07743, Jena, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Lessingstraße 8, D-07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, D-07743, Jena, Germany
| | - Volker Deckert
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Straße 9, D-07745, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, D-07743, Jena, Germany
| |
Collapse
|
2
|
Leer K, Cinar G, Solomun JI, Martin L, Nischang I, Traeger A. Core-crosslinked, temperature- and pH-responsive micelles: design, physicochemical characterization, and gene delivery application. NANOSCALE 2021; 13:19412-19429. [PMID: 34591061 DOI: 10.1039/d1nr04223h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stimuli-responsive block copolymer micelles can provide tailored properties for the efficient delivery of genetic material. In particular, temperature- and pH-responsive materials are of interest, since their physicochemical properties can be easily tailored to meet the requirements for successful gene delivery. Within this study, a stimuli-responsive micelle system for gene delivery was designed based on a diblock copolymer consisting of poly(N,N-diethylacrylamide) (PDEAm) as a temperature-responsive segment combined with poly(aminoethyl acrylamide) (PAEAm) as a pH-responsive, cationic segment. Upon temperature increase, the PDEAm block becomes hydrophobic due to its lower critical solution temperature (LCST), leading to micelle formation. Furthermore, the monomer 2-(pyridin-2-yldisulfanyl)ethyl acrylate (PDSAc) was incorporated into the temperature-responsive PDEAm building block enabling disulfide crosslinking of the formed micelle core to stabilize its structure regardless of temperature and dilution. The cloud points of the PDEAm block and the diblock copolymer were investigated by turbidimetry and fluorescence spectroscopy. The temperature-dependent formation of micelles was analyzed by dynamic light scattering (DLS) and elucidated in detail by an analytical ultracentrifuge (AUC), which provided detailed insights into the solution dynamics between polymers and assembled micelles as a function of temperature. Finally, the micelles were investigated for their applicability as gene delivery vectors by evaluation of cytotoxicity, pDNA binding, and transfection efficiency using HEK293T cells. The investigations showed that core-crosslinking resulted in a 13-fold increase in observed transfection efficiency. Our study presents a comprehensive investigation from polymer synthesis to an in-depth physicochemical characterization and biological application of a crosslinked micelle system including stimuli-responsive behavior.
Collapse
Affiliation(s)
- Katharina Leer
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Gizem Cinar
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Jana I Solomun
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Liam Martin
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
3
|
Elter JK, Eichhorn J, Schacher FH. Polyether-Based Diblock Terpolymer Micelles with Pendant Anthracene Units-Light-Induced Crosslinking and Limitations Regarding Reversibility. Macromol Rapid Commun 2021; 42:e2100485. [PMID: 34463379 DOI: 10.1002/marc.202100485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/23/2021] [Indexed: 11/10/2022]
Abstract
The synthesis of 9-methylanthracenyl glycidyl ether (AnthGE) as a crosslinkable monomer that can be applied in anionic ring opening polymerization is reported. Diblock terpolymers of the composition methoxy-poly(ethylene oxide)-block-poly(2-ethylhexyl glycidyl ether-co-9-methylanthracenyl glycidyl ether) (mPEO-b-P(EHGE-co-AnthGE) with 10 to 24 wt% of AnthGE are synthesized and characterized. Their micellization behavior, as well as their light-induced core-crosslinking via irradiation with UV light (λ = 365 nm) is studied. The results are compared with studies on the dimerization, and the dimer cleavage via irradiation with UV-C light (λ = 254 nm), of the same diblock terpolymer in organic solution, and the small-molecule model compound 9-methoxymethylanthracene. Differences in 1 H NMR spectra of the crosslinked or dimerized compounds and reaction kinetics of the dimerization reactions under different conditions suggest possible side reactions for the case of the core-crosslinking of micelles in aqueous solution. These side reactions limit the reversibility of the anthracene dimerization reaction in aqueous solutions, even if the anthracene molecule is encapsulated within the hydrophobic core of a polymeric micelle.
Collapse
Affiliation(s)
- Johanna K Elter
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, Jena, D-07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, D-07743, Germany
| | - Jonas Eichhorn
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, Jena, D-07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, D-07743, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, Jena, D-07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, D-07743, Germany
| |
Collapse
|
4
|
Elter JK, Eichhorn J, Ringleb M, Schacher FH. Amine-containing diblock terpolymers via AROP: a versatile method for the generation of multifunctional micelles. Polym Chem 2021. [DOI: 10.1039/d1py00666e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We herein report the synthesis and block copolymerization via AROP of three glycidyl amine species (PiGA; OPGA, and MPGA) with different hydrophobicity. Micelles formed from these block copolymers respond to changes in pH and H2O2 concentration.
Collapse
Affiliation(s)
- Johanna K. Elter
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- D-07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Jonas Eichhorn
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- D-07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Michael Ringleb
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- D-07743 Jena
- Germany
| | - Felix H. Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- D-07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| |
Collapse
|
5
|
Lu Y, Gao X, Cao M, Wu B, Su L, Chen P, Miao J, Wang S, Xia R, Qian J. Interface crosslinked mPEG-b-PAGE-b-PCL triblock copolymer micelles with high stability for anticancer drug delivery. Colloids Surf B Biointerfaces 2020; 189:110830. [PMID: 32045844 DOI: 10.1016/j.colsurfb.2020.110830] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/18/2020] [Accepted: 01/25/2020] [Indexed: 01/28/2023]
Abstract
The stability of polymeric micelles is a key property for anticancer drug delivery. In this study, a novel amphiphilic triblock copolymer, methoxy poly(ethylene glycol)-b-poly(allyl glycidyl ether)-b-poly(ε-caprolactone) (mPEG-b-PAGE-b-PCL), with different hydrophobic lengths was designed and synthesized using the combination of two successive ring-opening polymerizations. The products were characterized using 1H NMR and gel permeation chromatography (GPC). The triblock copolymers could self-assemble into micelles to encapsulate doxorubicin (DOX). The diameter of the DOX-loaded micelles increased from 63 to 92 nm with increasing PCL block length in the copolymer composition. The interface of the mPEG-b-PAGE-b-PCL micelles was crosslinked by a thiol-ene reaction with 1,4-butanedithiol. The stability, drug release and in vitro cytotoxicity of the DOX-loaded micelles were studied. The results showed that the DOX-loaded micelles could be effectively endocytosed by cancer cells and have good antitumor efficacy. In addition, the crosslinked micelles (CLMs) had better tumor accumulation than the noncrosslinked micelles (NCLMs) after intravenous injection using the lipophilic dye DiR.
Collapse
Affiliation(s)
- Yujie Lu
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Xuedi Gao
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Ming Cao
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China.
| | - Bin Wu
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Lifen Su
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Peng Chen
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Jibin Miao
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Song Wang
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Ru Xia
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China.
| | - Jiasheng Qian
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| |
Collapse
|
6
|
Zhang WJ, Kadirkhanov J, Wang CH, Ding SG, Hong CY, Wang F, You YZ. Polymerization-induced self-assembly for the fabrication of polymeric nano-objects with enhanced structural stability by cross-linking. Polym Chem 2020. [DOI: 10.1039/d0py00368a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review discusses the strategies of core-cross-linking in most of the PISA literatures (including post-polymerization cross-linking, photo-cross-linking and in situ cross-linking) and the applications of the cross-linked nano-objects.
Collapse
Affiliation(s)
- Wen-Jian Zhang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Jamshid Kadirkhanov
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Chang-Hui Wang
- Department of Cardiology
- First Affiliated Hospital of Anhui Medical University
- Hefei 230026
- China
| | - Sheng-Gang Ding
- Department of Pediatrics
- First Affiliated Hospital of Anhui Medical University
- Hefei 230026
- China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Fei Wang
- Neurosurgical Department
- The First Affiliated Hospital of USTC
- Division of Life Sciences and Medicine
- University of Science and Technology of China
- Hefei
| | - Ye-Zi You
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| |
Collapse
|
7
|
Adatia KK, Keller S, Götz T, Tovar GEM, Southan A. Hydrogels with multiple clickable anchor points: synthesis and characterization of poly(furfuryl glycidyl ether)-block-poly(ethylene glycol) macromonomers. Polym Chem 2019. [DOI: 10.1039/c9py00755e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional polyacrylamide hydrogels containing multiple furfuryl anchor points for Diels–Alder reactions were prepared employing new macromonomers.
Collapse
Affiliation(s)
- Karishma K. Adatia
- Institute of Interfacial Process Engineering and Plasma Technology IGVP
- University of Stuttgart
- 70569 Stuttgart
- Germany
| | - Silke Keller
- Institute of Interfacial Process Engineering and Plasma Technology IGVP
- University of Stuttgart
- 70569 Stuttgart
- Germany
| | - Tobias Götz
- Institute of Interfacial Process Engineering and Plasma Technology IGVP
- University of Stuttgart
- 70569 Stuttgart
- Germany
| | - Günter E. M. Tovar
- Institute of Interfacial Process Engineering and Plasma Technology IGVP
- University of Stuttgart
- 70569 Stuttgart
- Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology IGVP
- University of Stuttgart
- 70569 Stuttgart
- Germany
| |
Collapse
|
8
|
Elter JK, Biehl P, Gottschaldt M, Schacher FH. Core-crosslinked worm-like micelles from polyether-based diblock terpolymers. Polym Chem 2019. [DOI: 10.1039/c9py01054h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We herein report on the synthesis of polyether-based diblock terpolymers and their self-assembly into complex solution structures (e.g. filomicelles). The aggregates were core-crosslinked and their structure was influenced via ultrasonication.
Collapse
Affiliation(s)
- Johanna K. Elter
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- D-07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Philip Biehl
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- D-07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Michael Gottschaldt
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- D-07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Felix H. Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- D-07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| |
Collapse
|
9
|
Dowari P, Saha S, Pramanik B, Ahmed S, Singha N, Ukil A, Das D. Multiple Cross-Linking of a Small Peptide to Form a Size Tunable Biopolymer with Efficient Cell Adhesion and Proliferation Property. Biomacromolecules 2018; 19:3994-4002. [PMID: 30119603 DOI: 10.1021/acs.biomac.8b00950] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Development of biocompatible polymeric systems capable of cell adhesion and proliferation is a challenging task. Proper cross-linking of small cell adhesive peptide sequences is useful in this respect as it provides the inherent nontoxic environment as well as the cross-linked polymeric network to the cells for adhesion and proliferation. A multiple cross-linking strategy is applied to create a peptide-based cross-linked polymer. Covalent linkage through disulfide bond formation, supramolecular linkage using homoternary complexation by CB[8], and enzymatic cross-linking by HRP-mediated dimerization of tyrosine are used to prepare the cross-linked, peptide-based polymer decorated with cell-adhesive RGDS sequence. The supramolecular cross-linking via CB[8] provided stability as well as brings the RGDS sequences at the surface of the polymer particles. The order of cross-linking allowed to fine-tune the particle size of the polymer and polymer particles of wide range (200-1000 nm) can be prepared by varying the order. The cross-linked polymer particles (P1 and P2) were found to be stable at wide range of temperature and pH. Moreover, as intended, the polymer was noncytotoxic in nature and showed efficient cell adhesion and proliferation property, which can be used for further biological applications.
Collapse
Affiliation(s)
- Payel Dowari
- Department of Chemistry , Indian Institute of Technology Guwahati , Guwahati , Assam 781039 , India
| | - Shriya Saha
- Department of Biochemistry , University of Calcutta , 35, Ballygunge Circular Road , Kolkata 700019 , India
| | - Bapan Pramanik
- Department of Chemistry , Indian Institute of Technology Guwahati , Guwahati , Assam 781039 , India
| | - Sahnawaz Ahmed
- Department of Chemistry , Indian Institute of Technology Guwahati , Guwahati , Assam 781039 , India
| | - Nilotpal Singha
- Department of Chemistry , Indian Institute of Technology Guwahati , Guwahati , Assam 781039 , India
| | - Anindita Ukil
- Department of Biochemistry , University of Calcutta , 35, Ballygunge Circular Road , Kolkata 700019 , India
| | - Debapratim Das
- Department of Chemistry , Indian Institute of Technology Guwahati , Guwahati , Assam 781039 , India
| |
Collapse
|