1
|
Wen J, Xu G, Liang Z, Li S, Wang Y, Yang J, Nie Y. Combing experimental methods and molecular simulations to study self-healing behaviors of polyurethane elastomers containing multiple hydrogen bond networks and flexible blocks. Phys Chem Chem Phys 2023; 25:28162-28179. [PMID: 37818678 DOI: 10.1039/d3cp02723f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The preparation of polymers with high self-healing ability is conducive to environmental protection and resource conservation. In the present work, two kinds of polyurethane (PU) elastomers were prepared: the one containing flexible end blocks (polypropylene glycol) and the other containing flexible end blocks and 2-ureido-4[1H]-pyrimidinone (UPy) groups that can form reversible quadruple hydrogen bonds. Both of the two PU elastomers have self-healing ability. At low temperatures the PU without UPy groups exhibits stronger self-healing ability, while at high temperatures the PU with UPy groups has better self-healing function. The difference can be attributed to the combined effect of segmental mobility and reversible network strength. Based on molecular simulations, we further observed that the self-healing behaviors are affected by four factors: healing temperature, reversible interaction strength, reversible interaction site density and segment diffusion ability.
Collapse
Affiliation(s)
- Jianlong Wen
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Guangwei Xu
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Zhaopeng Liang
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Sumin Li
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Yinmao Wang
- Key Laboratory for High Performance Transparent Protective Materials of Jiangsu Province, Jiangsu Tiemao Glass Co., Ltd., Nantong, 226600, China.
| | - Juan Yang
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Yijing Nie
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Guo H, Puttreddy R, Salminen T, Lends A, Jaudzems K, Zeng H, Priimagi A. Halogen-bonded shape memory polymers. Nat Commun 2022; 13:7436. [PMID: 36470884 PMCID: PMC9723116 DOI: 10.1038/s41467-022-34962-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Halogen bonding (XB), a non-covalent interaction between an electron-deficient halogen atom and a Lewis base, is widely adopted in organic synthesis and supramolecular crystal engineering. However, the roadmap towards materials applications is hindered by the challenges in harnessing this relatively weak intermolecular interaction to devise human-commanded stimuli-responsive soft materials. Here, we report a liquid crystalline network comprising permanent covalent crosslinks and dynamic halogen bond crosslinks, which possess reversible thermo-responsive shape memory behaviour. Our findings suggest that I···N halogen bond, a paradigmatic motif in crystal engineering studies, enables temporary shape fixation at room temperature and subsequent shape recovery in response to human body temperature. We demonstrate versatile shape programming of the halogen-bonded polymer networks through human-hand operation and propose a micro-robotic injection model for complex 1D to 3D shape morphing in aqueous media at 37 °C. Through systematic structure-property-performance studies, we show the necessity of the I···N crosslinks in driving the shape memory effect. The halogen-bonded shape memory polymers expand the toolbox for the preparation of smart supramolecular constructs with tailored mechanical properties and thermoresponsive behaviour, for the needs of, e.g., future medical devices.
Collapse
Affiliation(s)
- Hongshuang Guo
- grid.502801.e0000 0001 2314 6254Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 3, FI-33720 Tampere, Finland
| | - Rakesh Puttreddy
- grid.502801.e0000 0001 2314 6254Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 3, FI-33720 Tampere, Finland
| | - Turkka Salminen
- grid.502801.e0000 0001 2314 6254Tampere Microscopy Center, Tampere University, Korkeakoulunkatu 3, FI-33720 Tampere, Finland
| | - Alons Lends
- grid.419212.d0000 0004 0395 6526Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Riga, LV-1006 Latvia
| | - Kristaps Jaudzems
- grid.419212.d0000 0004 0395 6526Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Riga, LV-1006 Latvia
| | - Hao Zeng
- grid.502801.e0000 0001 2314 6254Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 3, FI-33720 Tampere, Finland
| | - Arri Priimagi
- grid.502801.e0000 0001 2314 6254Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 3, FI-33720 Tampere, Finland
| |
Collapse
|
3
|
Papagna R, Kutzinski D, Huber SM. Polymer‐Bound Halogen Bonding Organocatalysis. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Raffaella Papagna
- Ruhr-Universität Bochum: Ruhr-Universitat Bochum Chemie und Biochemie GERMANY
| | - Dana Kutzinski
- Ruhr-Universität Bochum: Ruhr-Universitat Bochum Chemie und Biochemie GERMANY
| | - Stefan Matthias Huber
- Ruhr-Universität Bochum Fakultät für Chemie und Biochemie NC 4/171Universitätsstraße 150 44801 Bochum GERMANY
| |
Collapse
|
4
|
Topaloğlu Aksoy B, Dedeoglu B, Zorlu Y, Ayhan MM, Çoşut B. Exploring halogen⋯halogen interactions in supramolecular self-assemblies of BODIPY networks. CrystEngComm 2022. [DOI: 10.1039/d2ce00776b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, the efficiency of halogen⋯halogen interactions to control supramolecular assemblies of boron dipyrromethene (BODIPY) (B1–B5) derivatives was explored.
Collapse
Affiliation(s)
| | - Burcu Dedeoglu
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, 41400, Türkiye
| | - Yunus Zorlu
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, 41400, Türkiye
| | - Mehmet Menaf Ayhan
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, 41400, Türkiye
| | - Bünyemin Çoşut
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, 41400, Türkiye
| |
Collapse
|
5
|
Kampes R, Zechel S, Hager MD, Schubert US. Halogen bonding in polymer science: towards new smart materials. Chem Sci 2021; 12:9275-9286. [PMID: 34349897 PMCID: PMC8278954 DOI: 10.1039/d1sc02608a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022] Open
Abstract
The halogen bond is a special non-covalent interaction, which can represent a powerful tool in supramolecular chemistry. Although the halogen bond offers several advantages compared to the related hydrogen bond, it is currently still underrepresented in polymer science. The structural related hydrogen bonding assumes a leading position in polymer materials containing supramolecular interactions, clearly indicating the high potential of using halogen bonding for the design of polymeric materials. The current developments regarding halogen bonding containing polymers include self-assembly, photo-responsive materials, self-healing materials and others. These aspects are highlighted in the present perspective. Furthermore, a perspective on the future of this rising young research field is provided. The incorporation of halogen bonding into polymer architectures is a new approach for the design of functional materials. This perspective emphasizes the current development in the field of halogen bonding featuring polymer materials.![]()
Collapse
Affiliation(s)
- Robin Kampes
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena Humboldtstraße 10 07743 Jena Germany .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena Philosophenweg 7 D-07743 Jena Germany
| | - Stefan Zechel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena Humboldtstraße 10 07743 Jena Germany .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena Philosophenweg 7 D-07743 Jena Germany
| | - Martin D Hager
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena Humboldtstraße 10 07743 Jena Germany .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena Philosophenweg 7 D-07743 Jena Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena Humboldtstraße 10 07743 Jena Germany .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena Philosophenweg 7 D-07743 Jena Germany
| |
Collapse
|
6
|
Özcan E, Dedeoglu B, Chumakov Y, Gürek AG, Zorlu Y, Çoşut B, Menaf Ayhan M. Halogen-Bonded BODIPY Frameworks with Tunable Optical Features*. Chemistry 2021; 27:1603-1608. [PMID: 32996613 DOI: 10.1002/chem.202003945] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/26/2020] [Indexed: 01/15/2023]
Abstract
The ability to tune the optical features of BODIPY materials in the solid state is essential for their photorelated application and requires efficient control of the crystal packing. In this study, such control of BODIPY supramolecular assemblies was achieved by deliberate design and synthesis of a BODIPY containing a strong halogen-bond (XB) acceptor (-NO2 ) and donor (I, Br) to mediate XB interactions. The di-halogenated structures formed isostructural mono-coordinate motif B3, B4 (1D tubular structure) and symmetric bifurcated motif B4-II (1D zigzag chains structure) through N-O⋅⋅⋅I, Br XB interactions. These XB interactions promote singlet-to-triplet intersystem crossing and triplet-to-singlet reverse intersystem crossing due to partial delocalization of oxygen electrons onto Br and I, which leads to unexpected fluorescence enhancement of B4-II. Finally, the indirect optical band gaps of B3, B4 and B4-II were amenable to tuning in the range of 1.85-2.50 eV by XB-driven crystal packings.
Collapse
Affiliation(s)
- Emrah Özcan
- Department of Chemistry, Faculty of Science, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey.,Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic
| | - Burcu Dedeoglu
- Department of Chemistry, Faculty of Science, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Yuri Chumakov
- Department of Physics, Faculty of Science, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Ayşe Gül Gürek
- Department of Chemistry, Faculty of Science, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Yunus Zorlu
- Department of Chemistry, Faculty of Science, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Bünyemin Çoşut
- Department of Chemistry, Faculty of Science, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Mehmet Menaf Ayhan
- Department of Chemistry, Faculty of Science, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| |
Collapse
|
7
|
Özcan E, Dedeoglu B, Chumakov Y, Zorlu Y, Çoşut B, Ayhan MM. Modulation of supramolecular self-assembly of BODIPY tectons via halogen bonding. CrystEngComm 2021. [DOI: 10.1039/d1ce00862e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In this study, the efficiency of halogen bonding strategies to control over the supramolecular assemblies of boron dipyrromethene (BODIPY) (B-1, B-2, and B-3) derivatives was explored.
Collapse
Affiliation(s)
- Emrah Özcan
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, 41400 Turkey
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Burcu Dedeoglu
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, 41400 Turkey
| | - Yurii Chumakov
- Department of Physics, Gebze Technical University, Gebze, Kocaeli, Turkey
- Institute of Applied Physics, MD-2028, Chisinau, Moldova
| | - Yunus Zorlu
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, 41400 Turkey
| | - Bünyemin Çoşut
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, 41400 Turkey
| | - Mehmet Menaf Ayhan
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, 41400 Turkey
| |
Collapse
|
8
|
Meurer J, Hniopek J, Dahlke J, Schmitt M, Popp J, Zechel S, Hager MD. Novel Biobased Self-Healing Ionomers Derived from Itaconic Acid Derivates. Macromol Rapid Commun 2020; 42:e2000636. [PMID: 33368758 DOI: 10.1002/marc.202000636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/03/2020] [Indexed: 11/11/2022]
Abstract
This article presents novel biobased ionomers featuring self-healing abilities. These smart materials are synthesized from itaconic acid derivates. Large quantities of itaconic acid can be produced from diverse biomass like corn, rice, and others. This study presents a comprehensive investigation of their thermal and mechanical properties via differential scanning calorimetry (DSC), thermo gravimetric analysis (TGA), and FT-Raman and FT-IR measurements as well as dynamic mechanic analysis. Within all these measurements, different kinds of structure-property relationships could be derived from these measurements. For example, the proportion of ionic groups enormously influences the self-healing efficiency. The investigation of the self-healing abilities reveals healing efficiencies up to 99% in 2 h at 90 °C for the itaconic acid based ionomer with the lowest ionic content.
Collapse
Affiliation(s)
- Josefine Meurer
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldstr. 10, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| | - Julian Hniopek
- Institute of Physical Chemistry (IPC), Friedrich Schiller University Jena, Helmholzweg 4, Jena, 07743, Germany.,Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Albert-Einstein-Straße 6, Jena, 07745, Germany.,Leibniz Institute of Photonic Technology, e. V. Jena, Albert-Einstein-Straße 9, Jena, 07745, Germany
| | - Jan Dahlke
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldstr. 10, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry (IPC), Friedrich Schiller University Jena, Helmholzweg 4, Jena, 07743, Germany.,Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Albert-Einstein-Straße 6, Jena, 07745, Germany
| | - Jürgen Popp
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany.,Institute of Physical Chemistry (IPC), Friedrich Schiller University Jena, Helmholzweg 4, Jena, 07743, Germany.,Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Albert-Einstein-Straße 6, Jena, 07745, Germany.,Leibniz Institute of Photonic Technology, e. V. Jena, Albert-Einstein-Straße 9, Jena, 07745, Germany
| | - Stefan Zechel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldstr. 10, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| | - Martin D Hager
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldstr. 10, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| |
Collapse
|
9
|
|
10
|
Xia D, Wang P, Ji X, Khashab NM, Sessler JL, Huang F. Functional Supramolecular Polymeric Networks: The Marriage of Covalent Polymers and Macrocycle-Based Host–Guest Interactions. Chem Rev 2020; 120:6070-6123. [DOI: 10.1021/acs.chemrev.9b00839] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Danyu Xia
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China
| | - Pi Wang
- Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiaofan Ji
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Niveen M. Khashab
- Smart Hybrid Materials (SHMS) Laboratory, Chemical Science Program, King Abdullah University of Science and Technology (KAUST), 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
- Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai 200444, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
11
|
Berger G, Frangville P, Meyer F. Halogen bonding for molecular recognition: new developments in materials and biological sciences. Chem Commun (Camb) 2020; 56:4970-4981. [DOI: 10.1039/d0cc00841a] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review highlights recent developments of halogen bonding in materials and biological sciences with a short discussion on the nature of the interaction.
Collapse
Affiliation(s)
- Gilles Berger
- Microbiology, Bioorganic and Macromolecular Chemistry
- Faculty of Pharmacy
- Université Libre de Bruxelles (ULB)
- Bruxelles
- Belgium
| | - Pierre Frangville
- Microbiology, Bioorganic and Macromolecular Chemistry
- Faculty of Pharmacy
- Université Libre de Bruxelles (ULB)
- Bruxelles
- Belgium
| | - Franck Meyer
- Microbiology, Bioorganic and Macromolecular Chemistry
- Faculty of Pharmacy
- Université Libre de Bruxelles (ULB)
- Bruxelles
- Belgium
| |
Collapse
|
12
|
Affiliation(s)
- Marco Saccone
- Institut für Organische Chemie, Universität Duisburg-Essen, Universitätsstraße 7, 45141 Essen, Germany
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze 6, 90128 Palermo, Italy
| | - Luca Catalano
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
13
|
Ateş ÖD, Zorlu Y, Kanmazalp SD, Chumakov Y, Gürek AG, Ayhan MM. Halogen bonding driven crystal engineering of iodophthalonitrile derivatives. CrystEngComm 2018. [DOI: 10.1039/c8ce00594j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various halogen bonding driven crystal structures can be obtained by simple modifications of iodophthalonitrile derivatives.
Collapse
Affiliation(s)
| | - Yunus Zorlu
- Department of Chemistry
- Gebze Technical University
- 41400 Turkey
- Institute of Nanotechnology
- Gebze Technical University
| | - Sibel Demir Kanmazalp
- Department of Physics
- Gebze Technical University
- 41400 Turkey
- Technical Science Vocational School
- Gaziantep University
| | - Yurii Chumakov
- Department of Physics
- Gebze Technical University
- 41400 Turkey
| | - Ayşe Gül Gürek
- Department of Chemistry
- Gebze Technical University
- 41400 Turkey
| | | |
Collapse
|