1
|
Weingarten P, Adams F. Silver-Mediated ARGET-ATRP of Reactive Acrylates Using TPMA NMe2 Ligand: A Universal Strategy for Controlled Copolymerization. ACS Macro Lett 2024; 13:1318-1324. [PMID: 39292121 DOI: 10.1021/acsmacrolett.4c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
A controlled polymerization using activated acrylate monomers via ARGET-ATRP is developed with a tris[(4-dimethylamino pyridyl)methyl]amine ligand to address issues with weaker ligands and monomers that can undergo postpolymerization functionalization. This catalyst system enables the polymerization of N-acryloxy succinimide, fluorinated monomers, and isocyanato ethyl acrylate under controlled homogeneous conditions, ensuring linear molecular-weight growth and low polydispersity. Two block copolymerization strategies produce amphiphilic copolymers with narrow molecular-weight distributions and customizable compositions, allowing for various postpolymerization functionalizations.
Collapse
Affiliation(s)
- Philipp Weingarten
- Wacker-Lehrstuhl für Makromolekulare Chemie, Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
- Chair of Macromolecular Materials and Fiber Chemistry, Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Friederike Adams
- Chair of Macromolecular Materials and Fiber Chemistry, Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
- Center for Ophthalmology, University Eye Hospital Tübingen, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Ma Q, Wang W, Zhang L, Cao H. RAFT Polymerization of Semifluorinated Monomers Mediated by a NIR Fluorinated Photocatalyst. Macromol Rapid Commun 2022; 43:e2200122. [PMID: 35394103 DOI: 10.1002/marc.202200122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/29/2022] [Indexed: 12/13/2022]
Abstract
Near-infrared (NIR) light plays an increasingly important role in the field of photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization due to its unique properties. Yet, the NIR photocatalyst with good stability for PET-RAFT polymerization remains promising. Here, a strategy of NIR PET-RAFT polymerization of semifluorinated monomers using fluorophenyl bacteriochlorin as a photocatalyst with strong absorption at the NIR light region (710-780 nm) is reported. In which, the F atoms are used to modify reduced tetraphenylporphyrin structure with enhanced photostability of photocatalyst. Under the irradiation of NIR light (λmax = 740 nm), the PET-RAFT polymerization of semifluorinated methylacrylic monomers presents living/control characteristics and temporal modulation. By the PET-RAFT polymerization-induced self-assembly (PISA) strategy, stable fluorine-containing micelles are constructed in various solvents. In addition, the fluorinated hydrophobic surface is fabricated via a surface-initiated PET-RAFT (SI-PET-RAFT) polymerization using silicon wafer bearing RAFT agents with tunable surface hydrophobicity. This strategy not only enlightens the application of further modified compounds based on porphyrin structure in photopolymerization, but also shows promising potential for the construction of well-defined functional fluoropolymers.
Collapse
Affiliation(s)
- Qiankun Ma
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wulong Wang
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Liangshun Zhang
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hongliang Cao
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
3
|
Hartlieb M. Photo-Iniferter RAFT Polymerization. Macromol Rapid Commun 2021; 43:e2100514. [PMID: 34750911 DOI: 10.1002/marc.202100514] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/03/2021] [Indexed: 12/27/2022]
Abstract
Light-mediated polymerization techniques offer distinct advantages over polymerization reactions fueled by thermal energy, such as high spatial and temporal control as well as the possibility to work under mild reaction conditions. Reversible addition-fragmentation chain-transfer (RAFT) polymerization is a highly versatile radical polymerization method that can be utilized to control a variety of monomers and produce a vast number of complex macromolecular structures. The use of light to drive a RAFT-polymerization is possible via multiple routes. Besides the use of photo-initiators, or photo-catalysts, the direct activation of the chain transfer agent controlling the RAFT process in a photo-iniferter (PI) process is an elegant way to initiate and control polymerization reactions. Within this review, PI-RAFT polymerization and its advantages over the conventional RAFT process are discussed in detail.
Collapse
Affiliation(s)
- Matthias Hartlieb
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany.,Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstraße 69, 14476, Potsdam, Germany
| |
Collapse
|
4
|
Grigoreva A, Tarankova K, Zaitsev S. RAFT (Co)polymerization of 1,1,1,3,3,3-Hexafluoroisopropyl Acrylate as the Synthesis Technique of Amphiphilic Copolymers. Macromol Res 2021. [DOI: 10.1007/s13233-021-9066-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Shahrokhinia A, Scanga RA, Biswas P, Reuther JF. PhotoATRP-Induced Self-Assembly (PhotoATR-PISA) Enables Simplified Synthesis of Responsive Polymer Nanoparticles in One-Pot. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02106] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ali Shahrokhinia
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Randall A. Scanga
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Priyanka Biswas
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - James F. Reuther
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
6
|
Bray C, Li G, Postma A, Strover LT, Wang J, Moad G. Initiation of RAFT Polymerization: Electrochemically Initiated RAFT Polymerization in Emulsion (Emulsion eRAFT), and Direct PhotoRAFT Polymerization of Liquid Crystalline Monomers. Aust J Chem 2021. [DOI: 10.1071/ch20260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We report on two important advances in radical polymerization with reversible addition–fragmentation chain transfer (RAFT polymerization). (1) Electrochemically initiated emulsion RAFT (eRAFT) polymerization provides rapid polymerization of styrene at ambient temperature. The electrolytes and mediators required for eRAFT are located in the aqueous continuous phase separate from the low-molar-mass-dispersity macroRAFT agent mediator and product in the dispersed phase. Use of a poly(N,N-dimethylacrylamide)-block-poly(butyl acrylate) amphiphilic macroRAFT agent composition means that no added surfactant is required for colloidal stability. (2) Direct photoinitiated (visible light) RAFT polymerization provides an effective route to high-purity, low-molar-mass-dispersity, side chain liquid-crystalline polymers (specifically, poly(4-biphenyl acrylate)) at high monomer conversion. Photoinitiation gives a product free from low-molar-mass initiator-derived by-products and with minimal termination. The process is compared with thermal dialkyldiazene initiation in various solvents. Numerical simulation was found to be an important tool in discriminating between the processes and in selecting optimal polymerization conditions.
Collapse
|
7
|
Macromolecular engineering approach for the preparation of new architectures from fluorinated olefins and their applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101255] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Li S, Han G, Zhang W. Photoregulated reversible addition–fragmentation chain transfer (RAFT) polymerization. Polym Chem 2020. [DOI: 10.1039/d0py00054j] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Different strategies on photoregulated RAFT polymerization are developed. This minireview summarizes recent advances in photoregulated RAFT polymerization and its applications.
Collapse
Affiliation(s)
- Shenzhen Li
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Guang Han
- State Key Laboratory of Special Functional Waterproof Materials
- Beijing Oriental Yuhong Waterproof Technology Co
- Ltd
- Beijing 100123
- China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
9
|
Dadashi-Silab S, Matyjaszewski K. Iron-Catalyzed Atom Transfer Radical Polymerization of Semifluorinated Methacrylates. ACS Macro Lett 2019; 8:1110-1114. [PMID: 35619440 DOI: 10.1021/acsmacrolett.9b00579] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fluorinated polymers are an important class of functional materials that exhibit unique properties such as high chemical resistance, thermal stability, and low surface energy. Atom transfer radical polymerization (ATRP) of semifluorinated monomers catalyzed by copper catalysts often requires development of special conditions to control the polymerization and prevent side reactions such as base-catalyzed transesterification between the fluoro-containing monomers and solvents. In this paper, photoinduced iron-catalyzed ATRP was applied to the polymerization of a variety of semifluorinated methacrylate monomers. Polymerizations were initiated by photochemical generation of the Fe catalyst activator under blue light irradiation, enabling temporal control over the growth of polymer chains, and were well-controlled in various solvents, including fluorinated and nonfluorinated solvents, without undergoing any side reactions. Moreover, in situ chain extension and block copolymerization experiments demonstrated the preservation of chain end functionality, enabling facile synthesis of well-controlled block copolymers.
Collapse
Affiliation(s)
- Sajjad Dadashi-Silab
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|