Wang S, He F, Weng Q, Yuan D, Chen P, Chen X, An Z. Synthesis and characterization of a novel crosslinkable side-chain sulfonated poly(arylene ether sulfone) copolymer proton exchange membranes.
RSC Adv 2020;
10:24772-24783. [PMID:
35517481 PMCID:
PMC9055182 DOI:
10.1039/d0ra02987d]
[Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/28/2020] [Indexed: 11/21/2022] Open
Abstract
A series of novel crosslinkable side-chain sulfonated poly(arylene ether sulfone) copolymers (S-SPAES(x/y)) was prepared from 4,4′-biphenol, 4,4′-difluorodiphenyl sulfone, and a new difluoro aromatic monomer 1-(2,6-difluorophenyl)-2-(3,5-dimethoxyphenyl)-1,2-ethanedione (DFDMED) via co-polycondensation, demethylation, and further nucleophilic substitution of 1,4-butane sultone. Meanwhile, quinoxaline-based crosslinked copolymers (CS-SPAES(x/y)) were obtained via cyclo-condensation between S-SPAES(x/y) and 3,3′-diaminobenzidine. Both the crosslinkable and crosslinked copolymer membranes exhibit good mechanical properties and high anisotropic membrane swelling. Crosslinkable S-SPAES(1/2) with an ion exchange capacity (IEC) of 2.01 mequiv. g−1 displays a relatively high proton conductivity of 180 mS cm−1 and acceptable single-cell performance, which is attributed to its good microphase separation resulting from the side-chain sulfonated copolymer structures. Compared with S-SPAES(1/1) (IEC of 1.68 mequiv. g−1), crosslinked CS-SPAES(1/2) with a comparable IEC exhibits a larger conductivity of 157 mS cm−1, and significantly higher oxidative stability and lower membrane swelling, suggesting a distinct performance improvement due to the quinoxaline-based crosslinking.
A series of novel crosslinkable and crosslinked side-chain SPAES has been prepared. The S-SPAES(1/2) has high proton conductivity and acceptable single-cell performance.![]()
Collapse