1
|
Englert J, Palà M, Witzdam L, Rayatdoost F, Grottke O, Lligadas G, Rodriguez-Emmenegger C. Green Solvent-Based Antifouling Polymer Brushes Demonstrate Excellent Hemocompatibility. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18476-18485. [PMID: 38048267 DOI: 10.1021/acs.langmuir.3c02765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Medical devices are crucial for patient care, yet even the best biomaterials lead to infections and unwanted activation of blood coagulation, potentially being life-threatening. While hydrophilic polymer brushes are the best coatings to mitigate these issues, their reliance on fossil raw materials underscores the urgency of bio-based alternatives. In this work, we introduce polymer brushes of a green solvent-based monomer, prohibiting protein adsorption, bacterial colonization, and blood clot formation at the same level as fossil-based polymer brushes. The polymer brushes are composed of N,N-dimethyl lactamide acrylate (DMLA), can be polymerized in a controlled manner, and show strong hydrophilicity as determined by thermodynamic analysis of the surface tension components. The contact of various challenging protein solutions results in repellency on the poly(DMLA) brushes. Furthermore, the poly(DMLA) brushes completely prevent the adhesion and colonization of Escherichia coli. Remarkably, upon blood contact, the poly(DMLA) brushes successfully prevent the formation of a fibrin network and leukocyte adhesion on the surface. While showcasing excellent antifouling properties similar to those of N-hydroxypropyl methacrylamide (HPMA) polymer brushes as one of the best antifouling coatings, the absence of hydroxyl groups prevents activation of the complement system in blood. We envision the polymer brushes to contribute to the future of hemocompatible coatings.
Collapse
Affiliation(s)
- Jenny Englert
- DWI─Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
- Chair of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Marc Palà
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Lena Witzdam
- DWI─Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Farahnaz Rayatdoost
- Department of Anesthesiology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Oliver Grottke
- Department of Anesthesiology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Gerard Lligadas
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Cesar Rodriguez-Emmenegger
- DWI─Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials and Nanomedicine, The Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Zhuo C, Cao H, Wang X, Liu S, Wang X. Polymeric aluminum porphyrin: Controllable synthesis of ultra-low molecular weight CO2-based polyols. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Blokhin AN, Dudkina MM, Tenkovtsev AV. Ionic Ring-Opening Polymerization for the Synthesis of Star-Shaped Polymers. POLYMER SCIENCE SERIES C 2022. [DOI: 10.1134/s1811238222700187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Recent advances and challenges on enzymatic synthesis of biobased polyesters via polycondensation. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Sagnelli D, Vestri A, Curia S, Taresco V, Santagata G, Johansson MK, Howdle SM. Green enzymatic synthesis and processing of poly (cis-9,10-epoxy-18-hydroxyoctadecanoic acid) in supercritical carbon dioxide (scCO2). Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Wang J, Wang J, Qiu S, Chen W, Cheng L, Du W, Wang J, Han L, Song L, Hu Y. Biodegradable L-lysine-modified amino black phosphorus/poly(l-lactide-coε-caprolactone) nanofibers with enhancements in hydrophilicity, shape recovery and osteodifferentiation properties. Colloids Surf B Biointerfaces 2021; 209:112209. [PMID: 34814101 DOI: 10.1016/j.colsurfb.2021.112209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 11/06/2021] [Indexed: 12/19/2022]
Abstract
Biodegradable poly-(lactide-coε-caprolactone) (PLCL) scaffolds have opened new perspectives for tissue engineering due to their nontoxic and fascinating functionality. Herein, a black phosphorus-based biodegradable material with a combination of promising enhanced hydrophilicity, shape recovery and osteodifferentiation properties was proposed. First, amino black phosphorous (BP-NH2) was prepared by a simple ball milling method. Then, L-lysine-modified black phosphorous (L-NH-BP) was formed by hydrogen bonding between L-lysine and amino BP and integrated into PLCL to form PLCL/L-NH-BP composite fibers. The scaffolds had excellent shape recovery and shape fixity properties. Moreover, based on gene expression and protein level assessment, the scaffolds could enhance the expression of alkaline phosphatase (ALP) and bone morphogenetic protein 2 (BMP2), simultaneously improving the mineralization ability of bone mesenchymal stem cells. Specifically, this new composite material was experimentally verified to be degradable under mild conditions. This strategy provided new insight into the design of multifunctional materials for diverse applications.
Collapse
Affiliation(s)
- Jingwen Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 230001 Hefei, China
| | - Jing Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 230001 Hefei, China; Department of Thyroid and Breast Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001 Hefei, China
| | - Shuilai Qiu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 230001 Hefei, China.
| | - Weijian Chen
- State Key Laboratory of Fire Science, University of Science and Technology of China, 230001 Hefei, China
| | - Liang Cheng
- State Key Laboratory of Fire Science, University of Science and Technology of China, 230001 Hefei, China
| | - Wenxiang Du
- State Key Laboratory of Fire Science, University of Science and Technology of China, 230001 Hefei, China
| | - Jinghao Wang
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001 Hefei, China
| | - Longfei Han
- State Key Laboratory of Fire Science, University of Science and Technology of China, 230001 Hefei, China
| | - Lei Song
- State Key Laboratory of Fire Science, University of Science and Technology of China, 230001 Hefei, China
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 230001 Hefei, China.
| |
Collapse
|
7
|
Heterogeneous Double Metal Cyanide Catalyzed Synthesis of Poly(ε-caprolactone) Polyols for the Preparation of Thermoplastic Elastomers. Catalysts 2021. [DOI: 10.3390/catal11091033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A series of polycaprolactones (PCLs) with molecular weights of 950–10,100 g mol−1 and Ð of 1.10–1.87 have been synthesized via one-pot, solvent-free ring-opening polymerization (ROP) of ε-caprolactone (CL) using a heterogeneous double metal cyanide (DMC) catalyst. Various initiators, such as polypropylene glycol, ethylene glycol, propylene glycol, glycerol, and sorbitol, are employed to tune the number of hydroxyl end groups and properties of the resultant PCLs. Kinetic studies indicate that the DMC-catalyzed ROP of CL proceeds via a similar mechanism with the coordination polymerization. Branched PCLs copolymers are also synthesized via the DMC-catalyzed copolymerization of CL with glycidol. The α,ω-hydroxyl functionalized PCLs were successfully used as telechelic polymers to produce thermoplastic poly(ester-ester) and poly(ester-urethane) elastomers with well-balanced stress and strain properties.
Collapse
|
8
|
Goddard AR, Apebende EA, Lentz JC, Carmichael K, Taresco V, Irvine DJ, Howdle SM. Synthesis of water-soluble surfactants using catalysed condensation polymerisation in green reaction media. Polym Chem 2021; 12:2992-3003. [PMID: 34122625 PMCID: PMC8145305 DOI: 10.1039/d1py00415h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Sustainable and biobased surfactants are required for a wide range of everyday applications. Key drivers are cost, activity and efficiency of production. Polycondensation is an excellent route to build surfactant chains from bio-sourced monomers, but this typically requires high processing temperatures (≥200 °C) to remove the condensate and to lower viscosity of the polymer melt. In addition, high temperatures also increase the degree of branching and cause discolouration through the degradation of sensitive co-initiators and monomers. Here we report the synthesis of novel surface-active polymers from temperature sensitive renewable building blocks such as dicarboxylic acids, polyols (d-sorbitol) and fatty acids. We demonstrate that the products have the potential to be key components in renewable surfactant design, but only if the syntheses are optimised to ensure linear chains with hydrophilic character. The choice of catalyst is key to this control and we have assessed three different approaches. Additionally, we also demonstrate that use of supercritical carbon dioxide (scCO2) can dramatically improve conversion by reducing reaction viscosity, lowering reaction temperature, and driving condensate removal. We also evaluate the performance of the new biobased surfactants, focussing upon surface tension, and critical micelle concentration. Synthesis and characterisation of novel linear surface-active polymers from temperature sensitive renewable building blocks using an inexpensive catalyst and clean scCO2 as reaction medium.![]()
Collapse
Affiliation(s)
- Amy R Goddard
- Croda Europe Ltd, Foundry Lane Ditton Widnes WA8 8UB UK.,University of Nottingham, School of Chemistry, University Park Nottingham NG7 2RD UK
| | - Edward A Apebende
- University of Nottingham, School of Chemistry, University Park Nottingham NG7 2RD UK
| | - Joachim C Lentz
- University of Nottingham, School of Chemistry, University Park Nottingham NG7 2RD UK
| | | | - Vincenzo Taresco
- University of Nottingham, School of Chemistry, University Park Nottingham NG7 2RD UK
| | - Derek J Irvine
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham Nottingham NG7 2RD UK
| | - Steven M Howdle
- University of Nottingham, School of Chemistry, University Park Nottingham NG7 2RD UK
| |
Collapse
|
9
|
Star-shaped polycaprolactone bearing mussel-inspired catechol end-groups as a promising bio-adhesive. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Haddleton AJ, Bassett SP, Howdle SM. Comparison of polymeric particles synthesised using scCO2 as the reaction medium on the millilitre and litre scale. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Rao ZK, Wang TQ, Li Y, Zhu HY, Liu Y, Hao JY. Body temperature polymerization and in situ drug encapsulation in supercritical carbon dioxide. Polym Chem 2020. [DOI: 10.1039/d0py01131b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Body-temperature and solvent-free polymerization and in situ fabrication of drug-loaded microparticles are reported for the first time.
Collapse
Affiliation(s)
- Zi-Kun Rao
- School of Materials and Energy
- University of Electronic Science and Technology of China
- Cheng'du
- China
| | - Tian-Qiang Wang
- Chengdu Guibao Science and Technology Co
- Ltd
- Chengdu 610041
- China
| | - Yang Li
- School of Materials and Energy
- University of Electronic Science and Technology of China
- Cheng'du
- China
| | - Hong-Yu Zhu
- School of Materials and Energy
- University of Electronic Science and Technology of China
- Cheng'du
- China
| | - Yu Liu
- School of Materials and Energy
- University of Electronic Science and Technology of China
- Cheng'du
- China
| | - Jian-Yuan Hao
- School of Materials and Energy
- University of Electronic Science and Technology of China
- Cheng'du
- China
| |
Collapse
|
12
|
Sun T, Jiang X, Song Q, Shuai X, Chen Y, Zhao X, Cai Z, Li K, Qiao X, Hu S. Star-poly(ε-caprolactone) as the stationary phase for capillary gas chromatographic separation. RSC Adv 2019; 9:28783-28792. [PMID: 35529637 PMCID: PMC9071194 DOI: 10.1039/c9ra05085j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/07/2019] [Indexed: 01/07/2023] Open
Abstract
This work presents the separation performance of star-poly(ε-caprolactone) (star-PCL) as the stationary phase for capillary gas chromatography (GC). The statically coated star-PCL column showed a column efficiency of 3345 plates per m and moderate polarity. Importantly, the star-PCL column exhibited high selectivity and resolving capability for more than a dozen mixtures covering a wide-ranging variety of analytes and isomers. Among them, the star-PCL column displayed advantageous resolving capability over the commercial DB-1701 column for aromatic amine isomers such as toluidine, chloroaniline and bromoaniline. Moreover, it was applied for the determination of isomer impurities in real samples, showing good potential in GC applications.
Collapse
Affiliation(s)
- Tao Sun
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University Luoyang 471934 P. R. China
| | - Xingxing Jiang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University Luoyang 471934 P. R. China
| | - Qianqian Song
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University Luoyang 471934 P. R. China
| | - Xiaomin Shuai
- School of Petrochemical Engineering, Shenyang University of Technology Liaoyang 111003 Liaoning P. R. China
| | - Yujie Chen
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University Luoyang 471934 P. R. China
| | - Xinyu Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University Luoyang 471934 P. R. China
| | - Zhiqiang Cai
- School of Petrochemical Engineering, Shenyang University of Technology Liaoyang 111003 Liaoning P. R. China
| | - Ke Li
- College of Food and Drug, Luoyang Normal University Luoyang 471934 P. R. China
| | - Xiaoguang Qiao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University Luoyang 471934 P. R. China
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Shaoqiang Hu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University Luoyang 471934 P. R. China
| |
Collapse
|