2
|
Tao L, Xiao A, Lyu X, Tang Z, Yu Z, Shen Z, Fan X. Preparation of Complex Ratio‐Dependent Nanomaterials from Polymerizable Hydrogen‐Bonded Liquid Crystal. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lei Tao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Shenzhen Key Laboratory of Functional Polymers, School of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518060 PR China
| | - Anqi Xiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Xiaolin Lyu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Zhehao Tang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Zhen‐Qiang Yu
- Shenzhen Key Laboratory of Functional Polymers, School of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518060 PR China
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Xinghe Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| |
Collapse
|
3
|
Yasen W, Dong R, Aini A, Zhu X. Recent advances in supramolecular block copolymers for biomedical applications. J Mater Chem B 2021; 8:8219-8231. [PMID: 32803207 DOI: 10.1039/d0tb01492c] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Supramolecular block copolymers (SBCs) have received considerable interest in polymer chemistry, materials science, biomedical engineering and nanotechnology owing to their unique structural and functional advantages, such as low cytotoxicity, outstanding biodegradability, smart environmental responsiveness, and so forth. SBCs comprise two or more different homopolymer subunits linked by noncovalent bonds, and these polymers, in particular, combine the dynamically reversible nature of supramolecular polymers with the hierarchical microphase-separated structures of block polymers. A rapidly increasing number of publications on the synthesis and applications of SBCs have been reported in recent years; however, a systematic summary of the design, synthesis, properties and applications of SBCs has not been published. To this end, this review provides a brief overview of the recent advances in SBCs and describes the synthesis strategies, properties and functions, and their widespread applications in drug delivery, gene delivery, protein delivery, bioimaging and so on. In this review, we aim to elucidate the general concepts and structure-property relationships of SBCs, as well as their practical bioapplications, shedding further valuable insights into this emerging research field.
Collapse
Affiliation(s)
- Wumaier Yasen
- School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, China and School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Ruijiao Dong
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China. and Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK.
| | - Aliya Aini
- School of Foreign Languages, Xinjiang University, Urumqi 830046, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
4
|
Lyu X, Tang Z, Li Y, Xiao A, Shen Z, Zheng S, Fan XH. Tailored Polymer Particles with Ordered Network Structures in Emulsion Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:509-515. [PMID: 33347292 DOI: 10.1021/acs.langmuir.0c03179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The structural control of block copolymer (BCP) particles, which determines their properties and utilities, is quite important. Understanding the structural relationship between solution-cast samples and polymer particles in a confined space is necessary to precisely regulate the internal structure of polymer particles. Therefore, a facile method by choosing an appropriate selective solvent is reported to prepare spherical polymer particles with ordered network structures. The rod-coil BCP, poly(dimethylsiloxane)-b-poly{2,5-bis[(4-methoxyphenyl)-oxycarbonyl]styrene} (PDMS-b-PMPCS), was chosen as a model polymer because of its strong phase segregation ability. First, the structures of the BCP with a thermodynamically stable lamellar structure cast from different selective solvents were systematically studied. Then, a polymer particle with the same internal structure as that of the solution-cast sample can be easily prepared by self-assembling in an emulsion confined space. The relatively large particle size is of importance in this process because the large value of the particle size to periodicity ratio can provide a weak confined environment. This method helps us understand the inherent self-assembling mechanism of polymer particles in an emulsion confined space and accurately control the internal structure of the polymer particle obtained.
Collapse
Affiliation(s)
- Xiaolin Lyu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zhehao Tang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yujie Li
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, China
| | - Anqi Xiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shijun Zheng
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, China
| | - Xing-He Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Lei L, Han L, Ma H, Zhang R, Huang S, Shen H, Yang L, Li C, Zhang S, Bai H, Ma Q, Li Y. Cooperative and Independent Effect of Modular Functionalization on Mesomorphic Performances and Microphase Separation of Well-Designed Liquid Crystalline Diblock Copolymers. Chemistry 2020; 26:11199-11208. [PMID: 32227410 DOI: 10.1002/chem.202000268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Indexed: 11/06/2022]
Abstract
Liquid crystalline block copolymers (LCBCPs) are promising for developing functional materials owing to an assembly of better functionalities. Taking advantage of differences in reactivity between alkynyl and vinyl over temperature during hydrosilylation, a series of LCBCPs with modular functionalization of the block copolymers (BCPs) are reported by independently and site-selectively attaching azobenzene moieties containing alkynyl (LC1 ) and Si-H (LC2 ) terminals into well-designed poly(styrene)-block-polybutadienes (PS-b-PBs) and poly(4-vinylphenyldimethylsilane)-block-polybutadienes (PVPDMS-b-PBs) produced from living anionic polymerization (LAP). By the principle of modular functionalization, it is demonstrated that mono-functionalized (PVPDMS-g-LC1 )-b-PB and PS-b-(PB-g-LC2 ) not only maintain independence but also have cooperative contributions to bi-functionalized (PVPDMS-g-LC1 )-b-(PB-g-LC2 ) in terms of mesomorphic performances and microphase separation, which is evident from differential scanning calorimetry (DSC) and polarized optical morphologies (POM) and identified by powder X-ray diffractions. With the application of the new principle of modular functionalization, local-crosslinked liquid crystalline networks (LCNs) with controlled functionality are successfully synthesized, which show well-controlled phase behaviors over molecular compositions.
Collapse
Affiliation(s)
- Lan Lei
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Li Han
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Hongwei Ma
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Ruixue Zhang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Shuai Huang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Heyu Shen
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Lincan Yang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Chao Li
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Songbo Zhang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Hongyuan Bai
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Qingchi Ma
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| |
Collapse
|