1
|
Zakrzewski J, Liberka M, Wang J, Chorazy S, Ohkoshi SI. Optical Phenomena in Molecule-Based Magnetic Materials. Chem Rev 2024; 124:5930-6050. [PMID: 38687182 PMCID: PMC11082909 DOI: 10.1021/acs.chemrev.3c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Since the last century, we have witnessed the development of molecular magnetism which deals with magnetic materials based on molecular species, i.e., organic radicals and metal complexes. Among them, the broadest attention was devoted to molecule-based ferro-/ferrimagnets, spin transition materials, including those exploring electron transfer, molecular nanomagnets, such as single-molecule magnets (SMMs), molecular qubits, and stimuli-responsive magnetic materials. Their physical properties open the application horizons in sensors, data storage, spintronics, and quantum computation. It was found that various optical phenomena, such as thermochromism, photoswitching of magnetic and optical characteristics, luminescence, nonlinear optical and chiroptical effects, as well as optical responsivity to external stimuli, can be implemented into molecule-based magnetic materials. Moreover, the fruitful interactions of these optical effects with magnetism in molecule-based materials can provide new physical cross-effects and multifunctionality, enriching the applications in optical, electronic, and magnetic devices. This Review aims to show the scope of optical phenomena generated in molecule-based magnetic materials, including the recent advances in such areas as high-temperature photomagnetism, optical thermometry utilizing SMMs, optical addressability of molecular qubits, magneto-chiral dichroism, and opto-magneto-electric multifunctionality. These findings are discussed in the context of the types of optical phenomena accessible for various classes of molecule-based magnetic materials.
Collapse
Affiliation(s)
- Jakub
J. Zakrzewski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Michal Liberka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Junhao Wang
- Department
of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tonnodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Kong FY, Han HZ, Huang SX, Teng QH, Li Y, Zhang XQ, Zhu L, Wang K, Liang FP. A Pair of Chiral Dysprosium Single-Ion Magnets with 2,6-Bis[(4S/4R)4-phenyl-2-oxazolinyl]pyridine and Hexafluoroacetylacetonate Ligands. RUSS J COORD CHEM+ 2022. [DOI: 10.1134/s1070328422100025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Martynov AG, Horii Y, Katoh K, Bian Y, Jiang J, Yamashita M, Gorbunova YG. Rare-earth based tetrapyrrolic sandwiches: chemistry, materials and applications. Chem Soc Rev 2022; 51:9262-9339. [DOI: 10.1039/d2cs00559j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review summarises advances in chemistry of tetrapyrrole sandwiches with rare earth elements and highlights the current state of their use in single-molecule magnetism, organic field-effect transistors, conducting materials and nonlinear optics.
Collapse
Affiliation(s)
- Alexander G. Martynov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Leninskiy pr., 31, bldg.4, Moscow, Russia
| | - Yoji Horii
- Department of Chemistry, Faculty of Science, Nara Women's University, Nara 630-8506, Japan
| | - Keiichi Katoh
- Department of Chemistry, Graduate School of Science, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Yongzhong Bian
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
- Daxing Research Institute, and Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
- Daxing Research Institute, and Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, China
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Yulia G. Gorbunova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Leninskiy pr., 31, bldg.4, Moscow, Russia
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991, Leninskiy pr., 31, Moscow, Russia
| |
Collapse
|
4
|
Yang W, Ma L, Liu C, Sun T, Jiang J. Magnetic Behaviors and Nonlinear Optical Properties of Heteroleptic Bis(phthalocyaninato) Holmium Compounds. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Wei Yang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Li Ma
- Beijing Aerospace Propulsion Institute Beijing 100176 China
| | - Chao Liu
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Tingting Sun
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
5
|
Liu CM, Sun R, Wang BW, Wu F, Hao X, Shen Z. Homochiral Ferromagnetic Coupling Dy 2 Single-Molecule Magnets with Strong Magneto-Optical Faraday Effects at Room Temperature. Inorg Chem 2021; 60:12039-12048. [PMID: 34346678 DOI: 10.1021/acs.inorgchem.1c01218] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
By the bridging action of the 6-chloro-2-hydroxypyridine (Hchp) ligand and the terminal coordination role of the homochiral ligand, (-)/(+)-3-trifluoroacetyl camphor (l-Htfc/d-Htfc), a pair of enantiomerically pure dysprosium(III) dinuclear complexes, [Dy2(l-tfc)4(chp)2(MeOH)2] (l-1) and [Dy2(d-tfc)4(chp)2(MeOH)2] (d-1), was obtained. Their circular dichroism (CD) spectra verified their enantiomeric nature. Magnetic investigation indicated that they exhibit ferromagnetic interaction and good zero field single-molecule magnet (SMM) properties. The Ueff/k values of l-1 and d-1 at 0 Oe are 180.5 and 181.3 K, respectively, which are large values for homochiral Dy(III) SMMs. A reasonable explanation for the magnetic properties of l-1 and d-1 was supplied by ab initio calculations. Remarkably, magnetic circular dichroism (MCD) investigation revealed that the chiral Dy2 enantiomers show a strong magneto-optical Faraday effect at room temperature, suggesting potential applications in magneto-optical devices.
Collapse
Affiliation(s)
- Cai-Ming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Sun
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bing-Wu Wang
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fan Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiang Hao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Liu CM, Zhang DQ, Hao X, Zhu DB. Assembly of chiral 3d–4f wheel-like cluster complexes with achiral ligands: single-molecule magnetic behavior and magnetocaloric effect. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00632g] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
With the help of perchlorate ions, chiral M3Ln3 wheel-like cluster complexes were constructed from achiral ligands, and showed single-molecule magnetic behavior and magnetocaloric effect.
Collapse
Affiliation(s)
- Cai-Ming Liu
- Beijing National Laboratory for Molecular Sciences
- Center for Molecular Science
- Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
| | - De-Qing Zhang
- Beijing National Laboratory for Molecular Sciences
- Center for Molecular Science
- Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Xiang Hao
- Beijing National Laboratory for Molecular Sciences
- Center for Molecular Science
- Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Dao-Ben Zhu
- Beijing National Laboratory for Molecular Sciences
- Center for Molecular Science
- Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
7
|
Zhi Q, Ma F, Wang C, Chen Y, Wang H, Sun H, Jiang J. Single‐Ion Magnet Investigation of ABAB‐Type Tetrachloro‐ and Tetraalkoxy‐Substituted Bis(phthalocyaninato) Terbium Double‐Decker with
D
2
Symmetrical Ligand Field. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Qianjun Zhi
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry University of Science and Technology Beijing Beijing 100083 China
| | - Fang Ma
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials Beijing Normal University Beijing 100875 China
| | - Chiming Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry University of Science and Technology Beijing Beijing 100083 China
| | - Yuxiang Chen
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry University of Science and Technology Beijing Beijing 100083 China
| | - Hailong Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry University of Science and Technology Beijing Beijing 100083 China
| | - Haoling Sun
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials Beijing Normal University Beijing 100875 China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
8
|
Yao X, Yan P, An G, Li Y, Li W, Li G. Local Geometry Symmetry and Electrostatic Distribution Dominated Eight‐Coordinate β‐Diketone Dy
III
SIMs. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xu Yao
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science Heilongjiang University No. 74, Xuefu Road 150080 Harbin Nangang District People's Republic of China
| | - Pengfei Yan
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science Heilongjiang University No. 74, Xuefu Road 150080 Harbin Nangang District People's Republic of China
| | - Guanghui An
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science Heilongjiang University No. 74, Xuefu Road 150080 Harbin Nangang District People's Republic of China
| | - Yuxin Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science Heilongjiang University No. 74, Xuefu Road 150080 Harbin Nangang District People's Republic of China
| | - Weizuo Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science Heilongjiang University No. 74, Xuefu Road 150080 Harbin Nangang District People's Republic of China
| | - Guangming Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science Heilongjiang University No. 74, Xuefu Road 150080 Harbin Nangang District People's Republic of China
| |
Collapse
|
9
|
Chen Y, Ma F, Chen X, Zhang Y, Wang H, Wang K, Qi D, Sun HL, Jiang J. Bis[1,8,15,22-tetrakis(3-pentyloxy)phthalocyaninato]terbium Double-Decker Single-Ion Magnets. Inorg Chem 2019; 58:2422-2429. [PMID: 30721033 DOI: 10.1021/acs.inorgchem.8b02949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For the purpose of further exploring the effect of nonperipherally attached substituents on single-ion magnet (SIMs) performance, tetrasubstituted bis[1,8,15,22-tetrakis(3-pentyloxy)phthalocyaninato]terbium double-deckers, in both the reduced form TbH[Pc(α-OC5H11)4]2 (1) and the neutral form Tb[Pc(α-OC5H11)4]2 (2), were prepared. Single-crystal X-ray diffraction analysis for 2 unambiguously demonstrates the pinwheellike molecular structure with C4 symmetry. Magnetic investigations of the two bis(phthalocyaninato)terbium double-deckers reveal their characteristic SIM nature. 2 exhibits SIM performance superior to that of 1, as revealed by the larger energy barrier of 466 K for the former species and 431 K for the latter species due to the presence of organic radical-f (radical-Tb) interactions. The enhanced SIM performance of 2 in comparison to 1 actually stems from the presence of radical-f interactions and an enhanced ligand field strength. The latter positive factor is indicated by the electrostatic potential around the terbium ion on the basis of density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Yuxiang Chen
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| | - Fang Ma
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials , Beijing Normal University , Beijing 100875 , People's Republic of China
| | - Xin Chen
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| | - Yuehong Zhang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| | - Hailong Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| | - Kang Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| | - Dongdong Qi
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| | - Hao-Ling Sun
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials , Beijing Normal University , Beijing 100875 , People's Republic of China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| |
Collapse
|
10
|
Ji XQ, Ma F, Xiong J, Yang J, Sun HL, Zhang YQ, Gao S. A rare chloride-bridged dysprosium chain with slow magnetic relaxation: a thermally activated mechanism via a second-excited state promoted by magnetic interactions. Inorg Chem Front 2019. [DOI: 10.1039/c8qi01331d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Magnetic interactions induced by chloride bridges promote the slow magnetic relaxation in a dysprosium chain to pass through the second-excited state.
Collapse
Affiliation(s)
- Xiao-Qin Ji
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Fang Ma
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Jin Xiong
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Jing Yang
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Hao-Ling Sun
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- P. R. China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| |
Collapse
|