1
|
Zhu X, Xiong J, Wang Z, Chen R, Cheng G, Wu Y. Metallic Copper-Containing Composite Photocatalysts: Fundamental, Materials Design, and Photoredox Applications. SMALL METHODS 2022; 6:e2101001. [PMID: 35174995 DOI: 10.1002/smtd.202101001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/21/2021] [Indexed: 06/14/2023]
Abstract
Semiconductor photocatalysis has long been regarded as a potential solution to tackle the energy and environmental challenges since the first discovery of water splitting by TiO2 almost 50 years ago. The past few years have seen a tremendous flurry of research interest in the modification of semiconductors because of their shortcomings in the aspects of solar harvesting, electron-hole pairs separation, and utilization of photogenerated carriers. Among the various strategies, the introduction of metallic copper into the photocatalysis system can not only enhance the absorption of sunlight and the separation efficiency of photogenerated electrons and holes, but also increase the adsorption ability of substrate and the number of active sites, so as to realize the high solar to chemical energy conversion efficiency. This review focuses on the rational design of copper-based composites and their applications in photoredox catalysis. First, the preparation methods of metallic copper-containing composites are discussed. Then, the applications of different types of copper-based composites in the photocatalytic removal of pollutants, splitting of water to hydrogen production, reduction of carbon dioxide, and conversion of organic matter are introduced. Finally, the opportunities and challenges in the design and synthesis of copper-based composites and their applications in the photocatalysis are prospected.
Collapse
Affiliation(s)
- Xueteng Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan, 430205, P. R. China
| | - Jinyan Xiong
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Zhiyuan Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Rong Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan, 430205, P. R. China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Gang Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan, 430205, P. R. China
| | - Yuen Wu
- Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
2
|
First-principles calculations on the first row transition metals-substituted TMC6N7 clusters. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04137-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
3
|
Structures and electronic and magnetic properties of the 3d transition metal-substituted TMC5N8 clusters. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04080-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
4
|
Zhang M, Zhu K, Qin L, Kang SZ, Li X. Enhanced electron transfer and photocatalytic hydrogen production over the carbon nitride/porphyrin nanohybrid finely bridged by special copper. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02272d] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A graphitic carbon nitride/tetrakis-(4-hydroxyphenyl)porphyrin nanohybrid smartly fabricated with special Cu showed excellent photocatalytic hydrogen evolution performance.
Collapse
Affiliation(s)
- Meiqi Zhang
- School of Chemical and Environmental Engineering
- Center of Graphene Research
- Shanghai Institute of Technology
- Shanghai 201418
- China
| | - Kun Zhu
- School of Chemical and Environmental Engineering
- Center of Graphene Research
- Shanghai Institute of Technology
- Shanghai 201418
- China
| | - Lixia Qin
- School of Chemical and Environmental Engineering
- Center of Graphene Research
- Shanghai Institute of Technology
- Shanghai 201418
- China
| | - Shi-Zhao Kang
- School of Chemical and Environmental Engineering
- Center of Graphene Research
- Shanghai Institute of Technology
- Shanghai 201418
- China
| | - Xiangqing Li
- School of Chemical and Environmental Engineering
- Center of Graphene Research
- Shanghai Institute of Technology
- Shanghai 201418
- China
| |
Collapse
|