1
|
He JZ, Zhu BL, Huang ZH, Liang JP, Zhang ZW, Chen Q, Lin N. Asymmetric Cycloaddition of N-2,2,2-Trifluoroethylisatin Ketimines and Unsymmetrical Dicarbonyl-Activated Alkenes: Construction of 5'-Trifluoromethylated 3,2'-Pyrrolidinyl Spirooxindoles with Three Carbonyl Groups. J Org Chem 2024; 89:12924-12934. [PMID: 39197148 DOI: 10.1021/acs.joc.4c00805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
The asymmetric cycloaddition between N-2,2,2-trifluoroethylisatin ketimines and unsymmetrical dicarbonyl-activated alkenes catalyzed by a bifunctional squaramide has been discovered. The present study demonstrates an efficient approach for the regio-, diastereo-, and enantioselective synthesis of densely functionalized 5'-trifluoromethylated 3,2'-pyrrolidinyl spirooxindoles featuring three different types of carbonyl groups.
Collapse
Affiliation(s)
- Jin-Zhi He
- College of Pharmacy, Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, P. R. China
| | - Bao-Lei Zhu
- College of Pharmacy, Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, P. R. China
| | - Zhen-Hui Huang
- College of Pharmacy, Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, P. R. China
| | - Jin-Ping Liang
- College of Pharmacy, Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, P. R. China
| | - Zhen-Wei Zhang
- College of Pharmacy, Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, P. R. China
| | - Qing Chen
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning, 530200, P. R. China
| | - Ning Lin
- College of Pharmacy, Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, P. R. China
| |
Collapse
|
2
|
Benaglia M, Greco SJ, Westphal R, Venturini Filho E, Medici F. Stereoselective Domino Reactions in the Synthesis of Spiro Compounds. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1771-0641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractThis review summarizes the latest developments in asymmetric domino reactions, with the emphasis on the preparation of spiro compounds. Discussions on the stereoselectivity of the transformations, the reaction mechanisms, the rationalization of the stereochemical outcome, and the applications of domino reactions to the synthesis of biologically active molecules and natural products are included when appropriate.1 Introduction2 Asymmetric Domino Reactions2.1 Domino Reactions Initiated by Michael Reactions2.2 Domino Reactions Initiated by Mannich Reactions2.3 Domino Reactions Initiated by Knoevenagel Reactions2.4 Domino Reactions Initiated by Cycloaddition Reactions2.5 Domino Reactions Initiated by Metal Insertion2.6 Other Mechanisms3 Conclusion
Collapse
|
3
|
Tian X, Zhang Y, Ren W, Wang Y. Synthesis of functionalized 3,2′-pyrrolidinyl spirooxindoles via domino 1,6-addition/annulation reactions of para-quinone methides and 3-chlorooxindoles. Org Chem Front 2022. [DOI: 10.1039/d1qo01605a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A highly efficient diastereoselective [4 + 1] cycloaddition of ortho-tosylaminophenyl-substituted p-QMs with 3-chlorooxindoles has been developed to afford 3,2′-pyrrolidinyl spirooxindoles.
Collapse
Affiliation(s)
- Xiaochen Tian
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yongxing Zhang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Weiwu Ren
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology (QNLM), Qingdao 266237, China
| | - Yang Wang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology (QNLM), Qingdao 266237, China
| |
Collapse
|
4
|
Zhu WR, Su Q, Deng XY, Liu JS, Zhong T, Meng SS, Yi JT, Weng J, Lu G. Organocatalytic enantioselective S N1-type dehydrative nucleophilic substitution: access to bis(indolyl)methanes bearing quaternary carbon stereocenters. Chem Sci 2021; 13:170-177. [PMID: 35733509 PMCID: PMC9158264 DOI: 10.1039/d1sc05174a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
A highly general and straightforward approach to access chiral bis(indolyl)methanes (BIMs) bearing quaternary stereocenters has been realized via enantioconvergent dehydrative nucleophilic substitution. A broad range of 3,3'-, 3,2'- and 3,1'-BIMs were obtained under mild conditions with excellent efficiency and enantioselectivity (80 examples, up to 98% yield and >99 : 1 er). By utilizing racemic 3-indolyl tertiary alcohols as precursors of alkyl electrophiles and indoles as C-H nucleophiles, this organocatalytic strategy avoids pre-activation of substrates and produces water as the only by-product. Mechanistic studies suggest a formal SN1-type pathway enabled by chiral phosphoric acid catalysis. The practicability of the obtained enantioenriched BIMs was further demonstrated by versatile transformation and high antimicrobial activities (3al, MIC: 1 μg mL-1).
Collapse
Affiliation(s)
- Wen-Run Zhu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Qiong Su
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Xiao-Yi Deng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Jia-Sheng Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Tao Zhong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Shan-Shui Meng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Ji-Tao Yi
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Jiang Weng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Gui Lu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| |
Collapse
|
5
|
Freidooni J, Rad-Moghadam K, Saeedi-Mirakmahaleh M. ZrO 2 and Rice-Husk-Xanthate Adduct: An Efficient Bioderived Catalyst for Synthesis of Spiro[4 H-pyran-4,3′-indoline]s. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1998145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jannat Freidooni
- Chemistry Department, Payam Noor University of Mashhad, Mashhad, Iran
| | - Kurosh Rad-Moghadam
- Chemistry Department, Faculty of sciences, University of Guilan, Rasht, Iran
| | | |
Collapse
|
6
|
Saeed R, Sakla AP, Shankaraiah N. An update on the progress of cycloaddition reactions of 3-methyleneindolinones in the past decade: versatile approaches to spirooxindoles. Org Biomol Chem 2021; 19:7768-7791. [PMID: 34549231 DOI: 10.1039/d1ob01176f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cycloaddition reactions are of great interest due to their potential and rapid construction of optically enriched spiro-cyclic products. 3-Methyleneindolinones have been proven to be a valuable precursor in cycloaddition reactions for the construction of diverse 3,3'-spirocyclic oxindoles. Their versatile reactivity has provided a new forum for the development of a variety of building blocks and synthetic compounds, including bioactive molecules. Herein, significant accomplishments in the cycloaddition reactions of 3-methyleneindolinones for the synthesis of spirooxindoles have been summarised and elaborated. The review is outlined according to the type of cycloaddition such as [2 + 1], [2 + 2], [3 + 2], [4 + 2] and [5 + 2] cycloaddition reactions.
Collapse
Affiliation(s)
- Ruqaiya Saeed
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Akash P Sakla
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| |
Collapse
|
7
|
Yang Y, Wang X, Ye X, Wang B, Bao X, Wang H. Advances of α-activated cyclic isothiocyanate for the enantioselective construction of spirocycles. Org Biomol Chem 2021; 19:4610-4621. [PMID: 33949598 DOI: 10.1039/d1ob00564b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The efficient and enantioselective synthesis of pharmaceutically important spirocycles has attracted the focus of organic and medicinal chemists. In this context, with the excellent reactivity of α-activated isothiocyanate as formal 1,3-dipoles in the (3 + 2) cyclization process, the cyclic isothiocyanates featuring important pharmacophores, such as oxindole, pyrazolone, and indanone moieties, have emerged as powerful precursors to access a variety of spirocycles with highly structural diversities. In addition, the facile transformations of these spirocycles have shown potential applications in drug design. This review will cover the recent advances of α-activated cyclic isothiocyanates in the enantioselective construction of spirocycles since 2015, and the applications of corresponding products in organic and medicinal chemistry.
Collapse
Affiliation(s)
- Yang Yang
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xingyue Wang
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 112024, China
| | - Xiaoze Bao
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
8
|
Xie ZZ, Qian YL, Zheng Y, Zhao QL, Xiao JA, Xiang HY, Chen K, Yang H. Organocatalytic domino sequence to asymmetrically access spirocyclic oxindole-α-methylene-γ-lactams. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Biswas A, Ghosh A, Shankhdhar R, Chatterjee I. Squaramide Catalyzed Asymmetric Synthesis of Five‐ and Six‐Membered Rings. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Anup Biswas
- Department of Chemistry Hooghly Women's College Hooghly West Bengal India
| | - Avisek Ghosh
- Department of Chemistry Indian Institute of Technology- Ropar India
| | - Rajat Shankhdhar
- Department of Chemistry Indian Institute of Technology- Ropar India
| | | |
Collapse
|
10
|
Lei J, He L, Tang D, Wen J, Yan W, Li H, Chen Z, Xu Z. Solvent‐Dependent Chemoselective and Stereoselective Approach to Synthesis of Spiro‐γ‐Lactams with Potent Anticancer Activity. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jie Lei
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics IATTI College of Pharmacy, Chongqing University of Arts and Sciences Chongqing 402160 People's Republic of China
- Department of Pharmaceutical Sciences College of Pharmacy University of Arkansas for Medical Sciences Little Rock, AR 72205 United States
| | - Liu‐Jun He
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics IATTI College of Pharmacy, Chongqing University of Arts and Sciences Chongqing 402160 People's Republic of China
| | - Dian‐Yong Tang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics IATTI College of Pharmacy, Chongqing University of Arts and Sciences Chongqing 402160 People's Republic of China
| | - Jingyuan Wen
- School of Pharmacy University of Auckland Auckland 1023 New Zealand
| | - Wei Yan
- Department of Pharmaceutical Sciences College of Pharmacy University of Arkansas for Medical Sciences Little Rock, AR 72205 United States
| | - Hong‐yu Li
- Department of Pharmaceutical Sciences College of Pharmacy University of Arkansas for Medical Sciences Little Rock, AR 72205 United States
| | - Zhong‐Zhu Chen
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics IATTI College of Pharmacy, Chongqing University of Arts and Sciences Chongqing 402160 People's Republic of China
| | - Zhi‐Gang Xu
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics IATTI College of Pharmacy, Chongqing University of Arts and Sciences Chongqing 402160 People's Republic of China
| |
Collapse
|
11
|
Laviós A, Sanz‐Marco A, Vila C, Blay G, Pedro JR. Asymmetric Organocatalytic Synthesis of
aza
‐Spirocyclic Compounds from Isothiocyanates and Isocyanides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Adrián Laviós
- Departament de Química Orgànica-Facultat de Química Universitat de València C/ Dr. Moliner 50 46100 Burjassot (València) Spain
| | - Amparo Sanz‐Marco
- Departament de Química Orgànica-Facultat de Química Universitat de València C/ Dr. Moliner 50 46100 Burjassot (València) Spain
| | - Carlos Vila
- Departament de Química Orgànica-Facultat de Química Universitat de València C/ Dr. Moliner 50 46100 Burjassot (València) Spain
| | - Gonzalo Blay
- Departament de Química Orgànica-Facultat de Química Universitat de València C/ Dr. Moliner 50 46100 Burjassot (València) Spain
| | - José R. Pedro
- Departament de Química Orgànica-Facultat de Química Universitat de València C/ Dr. Moliner 50 46100 Burjassot (València) Spain
| |
Collapse
|
12
|
Liu SJ, Mao Q, Zhan G, Qin R, Chen BH, Xue J, Luo ML, Zhao Q, Han B. Stereoselective synthesis of trifluoroethyl 3,2'-spirooxindole γ-lactam through the organocatalytic cascade reaction of 3-((2,2,2-trifluoroethyl)amino)indolin-2-one. Org Biomol Chem 2021; 19:467-475. [PMID: 33347527 DOI: 10.1039/d0ob02166k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Newly designed 3-((2,2,2-trifluoroethyl)amino)indolin-2-ones were used for the facile synthesis of chiral fluoroalkyl-containing 3,2'-spirooxindole γ-lactam products. The secondary amine-catalysed Michael/hemiaminalization cascade reaction of 3-((2,2,2-trifluoroethyl)amino)indolin-2-one with α,β-unsaturated aldehydes followed by oxidation can easily produce the desired products in high yields (up to 86%) with excellent enantioselectivities (up to 99% ee) and diastereoselectivities (up to >95 : 5 dr).
Collapse
Affiliation(s)
- Shuai-Jiang Liu
- School of Basic Medical Sciences, School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Qing Mao
- School of Basic Medical Sciences, School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Gu Zhan
- School of Basic Medical Sciences, School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Rui Qin
- School of Basic Medical Sciences, School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ben-Hong Chen
- School of Basic Medical Sciences, School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jing Xue
- School of Basic Medical Sciences, School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Meng-Lan Luo
- School of Basic Medical Sciences, School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Qian Zhao
- School of Basic Medical Sciences, School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Bo Han
- School of Basic Medical Sciences, School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
13
|
Hou XQ, Lin Y, Du DM. Organocatalytic domino annulation of in situ generated tert-butyl 2-hydroxybenzylidenecarbamates with 2-isothiocyanato-1-indanones for synthesis of bridged and fused ring heterocycles. Org Chem Front 2021. [DOI: 10.1039/d1qo00626f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An asymmetric domino annulation of 2-isothiocyanato-1-indanones with tert-butyl 2-hydroxybenzylidenecarbamates was developed for the enantioselective construction of bridged and fused ring hererocycles in high yields with excellent stereoselectivities.
Collapse
Affiliation(s)
- Xi-Qiang Hou
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- People's Republic of China
| | - Ye Lin
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- People's Republic of China
| | - Da-Ming Du
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- People's Republic of China
| |
Collapse
|
14
|
Abstract
This review summaries recent synthetic developments towards spirocyclic oxindoles and applications as valuable medicinal and synthetic targets.
Collapse
Affiliation(s)
- Alexander J. Boddy
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| | - James A. Bull
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| |
Collapse
|
15
|
Gui H, Meng Z, Xiao Z, Yang Z, Wei Y, Shi M. Stereo‐ and Regioselective Construction of Spirooxindoles Having Continuous Spiral Rings via Asymmetric [3+2] Cyclization of 3‐Isothiocyanato Oxindoles with Thioaurone Derivatives. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hou‐Ze Gui
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences 345 Lingling Road 200032 Shanghai China
| | - Zhe Meng
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences 345 Lingling Road 200032 Shanghai China
| | - Zhan‐Shuai Xiao
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences 345 Lingling Road 200032 Shanghai China
| | - Ze‐Ren Yang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals School of Chemistry & Molecular Engineering East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Yin Wei
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals School of Chemistry & Molecular Engineering East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences 345 Lingling Road 200032 Shanghai China
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals School of Chemistry & Molecular Engineering East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| |
Collapse
|
16
|
Abstract
Arylidene-Δ2-pyrrolin-4-ones undergo organocatalyzed double spirocyclization with 3-isothiocianato oxindoles in a domino 1,4/1,2-addition sequence. The products contain three contiguous stereocenters (ee up to 98%, dr up to 99:1, 12 examples). The absolute configuration of the major diastereomer was determined by single crystal X-ray analysis. Along with heterocyclic Michael acceptors based on oxazolone, isoxazolone, thiazolidinone, pyrazolone, and pyrimidinedione, the reported results display the applicability of unsaturated Δ2-pyrrolin-4-ones (pyrrolones) for the organocatalyzed construction of 3D-rich pyrrolone-containing heterocycles.
Collapse
|
17
|
Mukherjee S, Biswas B. Organo‐Cascade Catalysis: Application of Merged Iminium‐Enamine Activation Technique and Related Cascade Reactivities. ChemistrySelect 2020. [DOI: 10.1002/slct.202003070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shirshendu Mukherjee
- Department of Chemistry Hooghly Mohsin Govt. College Hooghly 712101, West Bengal India
| | - Bhaskar Biswas
- Department of Chemistry University of North Bengal Siliguri Darjeeling 734013, West Bengal India
| |
Collapse
|
18
|
Zhu WR, Su Q, Diao HJ, Wang EX, Wu F, Zhao YL, Weng J, Lu G. Enantioselective Dehydrative γ-Arylation of α-Indolyl Propargylic Alcohols with Phenols: Access to Chiral Tetrasubstituted Allenes and Naphthopyrans. Org Lett 2020; 22:6873-6878. [PMID: 32808789 DOI: 10.1021/acs.orglett.0c02386] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, we report an enantioselective dehydrative γ-arylation of α-indolyl propargylic alcohols with phenols via organocatalysis, which provides efficient access to chiral tetrasubstituted allenes and naphthopyrans in high yields with excellent regio- and enantioselectivities under mild conditions. This method features the use of cheaply available naphthols/phenols as the C-H aryl source and liberating water as the sole byproduct. Control experiments suggest that the excellent enantioselectivity and remote regioselectivity stem from dual hydrogen-bonding interaction with the chiral phosphoric acid catalyst.
Collapse
Affiliation(s)
- Wen-Run Zhu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Qiong Su
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Hong-Juan Diao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Er-Xuan Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Feng Wu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yun-Long Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jiang Weng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Gui Lu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
19
|
Luo R, Chen MM, Ouyang L, Chan ASC, Lu G. Enantioselective Reformatsky Reaction of Ketones Catalyzed by Chiral Indolinylmethanol. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Renshi Luo
- Department Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery; School of Pharmaceutical Sciences; Sun Yat-sen University; 510006 Guangzhou P. R. China
- School of Pharmaceutical Sciences; Gannan Medical University; 341000 Ganzhou Jiangxi Province P. R. China
| | - Miao-Miao Chen
- Department Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery; School of Pharmaceutical Sciences; Sun Yat-sen University; 510006 Guangzhou P. R. China
| | - Lu Ouyang
- School of Pharmaceutical Sciences; Gannan Medical University; 341000 Ganzhou Jiangxi Province P. R. China
| | - Albert S. C. Chan
- Department Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery; School of Pharmaceutical Sciences; Sun Yat-sen University; 510006 Guangzhou P. R. China
| | - Gui Lu
- Department Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery; School of Pharmaceutical Sciences; Sun Yat-sen University; 510006 Guangzhou P. R. China
| |
Collapse
|
20
|
Liu X, Lu D, Wu J, Tan J, Jiang C, Gao G, Wang T. Stereoselective Synthesis of CF
3
‐Containing Spirooxindoles via 1,3‐Dipolar Cycloaddition by Dipeptide‐Based Phosphonium Salt Catalysis. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xin Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Dongming Lu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Jia‐Hong Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Jian‐Ping Tan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Chunhui Jiang
- School of Environmental and Chemical EngineeringJiangsu University of Science and Technology 2 Mengxi Road Zhenjiang 212003 People's Republic of China
| | - Guowei Gao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| |
Collapse
|
21
|
Song XJ, Ren HX, Xiang M, Li CY, Tian F, Wang LX. Base Catalyzed Abnormal [3 + 2]-Cycloaddition between Isatin N,N′-Cyclic Azomethine Imine 1,3-Dipole and 3-Methyleneoxindole for the One-Step Construction of Tetracyclic Bispirooxindoles. J Org Chem 2020; 85:3921-3928. [DOI: 10.1021/acs.joc.9b03050] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiang-Jia Song
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P.R. China
- University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Hong-Xia Ren
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P.R. China
- University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Min Xiang
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P.R. China
- University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Chen-Yi Li
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P.R. China
- University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Fang Tian
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P.R. China
| | - Li-Xin Wang
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P.R. China
| |
Collapse
|
22
|
Zhu WR, Su Q, Lin N, Chen Q, Zhang ZW, Weng J, Lu G. Organocatalytic synthesis of chiral CF3-containing oxazolidines and 1,2-amino alcohols: asymmetric oxa-1,3-dipolar cycloaddition of trifluoroethylamine-derived azomethine ylides. Org Chem Front 2020. [DOI: 10.1039/d0qo00990c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of CF3-containing oxazolidines were constructed via organocatalytic asymmetric oxa-1,3-dipolar cycloaddition. These oxazolidines could undergo facile conversion to CF3-containing 1,2-amino alcohols with vicinal stereogenic centers.
Collapse
Affiliation(s)
- Wen-Run Zhu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Qiong Su
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Ning Lin
- College of Pharmacy
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology
- Guangxi University of Chinese Medicine
- Guangxi University of Chinese Medicine
- Nanning
| | - Qing Chen
- College of Pharmacy
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology
- Guangxi University of Chinese Medicine
- Guangxi University of Chinese Medicine
- Nanning
| | - Zhen-Wei Zhang
- College of Pharmacy
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology
- Guangxi University of Chinese Medicine
- Guangxi University of Chinese Medicine
- Nanning
| | - Jiang Weng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Gui Lu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| |
Collapse
|
23
|
Gui H, Wu X, Wei Y, Shi M. A Formal Condensation and [4+1] Annulation Reaction of 3‐Isothiocyanato Oxindoles with Aza‐
o
‐Quinone Methides. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901124] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hou‐Ze Gui
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular EngineeringEast China University of Science and Technology 130 Mei Long Road Shanghai 200237 People's Republic of China
| | - Xiao‐Yun Wu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular EngineeringEast China University of Science and Technology 130 Mei Long Road Shanghai 200237 People's Republic of China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic ChemistryChinese Academy of Sciences 354 Fenglin Lu Shanghai 200032 People's Republic of China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular EngineeringEast China University of Science and Technology 130 Mei Long Road Shanghai 200237 People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic ChemistryChinese Academy of Sciences 354 Fenglin Lu Shanghai 200032 People's Republic of China
- Shenzhen Grubbs InstituteSouthern University of Science and Technology, Shenzhen Guangdong 518000 People's Republic of China
| |
Collapse
|
24
|
Tian Q, Liu Y, Wang X, Wang X, He W. Pd II
/Novel Chiral Cinchona Alkaloid Oxazoline-Catalyzed Enantioselective Oxidative Cyclization of Aromatic Alkenyl Amides. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qinqin Tian
- Department of Chemistry; School of Pharmacy; The Fourth Military Medical University; 710032 Xi'an People's Republic of China
| | - Yulong Liu
- Department of Chemistry; School of Pharmacy; The Fourth Military Medical University; 710032 Xi'an People's Republic of China
| | - Xiaoyun Wang
- Department of Chemistry; School of Pharmacy; The Fourth Military Medical University; 710032 Xi'an People's Republic of China
| | - Xie Wang
- Department of Chemistry; School of Pharmacy; The Fourth Military Medical University; 710032 Xi'an People's Republic of China
| | - Wei He
- Department of Chemistry; School of Pharmacy; The Fourth Military Medical University; 710032 Xi'an People's Republic of China
| |
Collapse
|
25
|
Shukla D, Babu SA. Pd‐Catalyzed Diastereoselective Intramolecular Amide
α
‐C−H Arylation in Sterically Hindered Monospirooxindole Motifs. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801732] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Dipti Shukla
- Department Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| | - Srinivasarao Arulananda Babu
- Department Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| |
Collapse
|
26
|
Zhang LL, Da BC, Xiang SH, Zhu S, Yuan ZY, Guo Z, Tan B. Organocatalytic double arylation of 3-isothiocyanato oxindoles: Stereocontrolled synthesis of complex spirooxindoles. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Akaev AA, Bezzubov SI, Desyatkin VG, Vorobyeva NS, Majouga AG, Melnikov MY, Budynina EM. Stereocontrolled [3+2] Cycloaddition of Donor-Acceptor Cyclopropanes to Iminooxindoles: Access to Spiro[oxindole-3,2'-pyrrolidines]. J Org Chem 2019; 84:3340-3356. [PMID: 30735387 DOI: 10.1021/acs.joc.8b03208] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel stereocontrolled assembly of spiro[oxindole-3,2'-pyrrolidines] via [3+2]-cycloaddition of donor-acceptor cyclopropanes to electron-poor ketimines, iminooxindoles, was developed. The method allows for efficient employment of common readily available donor-acceptor cyclopropanes, functionalized with ester, keto, nitro, cyano etc. groups, and N-unprotected iminooxindoles. The stereospecificity of the initial SN2-like imine attack on a cyclopropane molecule together with a high diastereoselectivity of further C-C bond formation facilitate a rapid access to spiro[oxindole-3,2'-pyrrolidines] in their optically active forms. Preliminary in vitro testing of the synthesized compounds against LNCaP (p53+) and PC-3 (p53-) cells revealed good antiproliferative activities and p53-selectivity indices for several compounds that are intriguing in terms of their further investigation as inhibitors of MDM2-p53 interaction.
Collapse
Affiliation(s)
- Andrey A Akaev
- Department of Chemistry , Lomonosov Moscow State University , Leninskie Gory 1-3 , Moscow 119991 , Russia
| | - Stanislav I Bezzubov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences , Leninskiy pr. 31 , Moscow 119991 , Russia
| | - Victor G Desyatkin
- Department of Chemistry , Lomonosov Moscow State University , Leninskie Gory 1-3 , Moscow 119991 , Russia
| | - Nataliya S Vorobyeva
- National University of Science and Technology "MISiS" , Leninskiy pr. 4 , Moscow 119991 , Russia
| | - Alexander G Majouga
- Department of Chemistry , Lomonosov Moscow State University , Leninskie Gory 1-3 , Moscow 119991 , Russia.,National University of Science and Technology "MISiS" , Leninskiy pr. 4 , Moscow 119991 , Russia.,Dmitry Mendeleev University of Chemical Technology of Russia , Miusskaya sq. 9 , Moscow 125047 , Russia
| | - Mikhail Ya Melnikov
- Department of Chemistry , Lomonosov Moscow State University , Leninskie Gory 1-3 , Moscow 119991 , Russia
| | - Ekaterina M Budynina
- Department of Chemistry , Lomonosov Moscow State University , Leninskie Gory 1-3 , Moscow 119991 , Russia
| |
Collapse
|
28
|
He X, Ji Y, Peng C, Han B. Organocatalytic Asymmetric Synthesis of Cyclic Compounds Bearing a Trifluoromethylated Stereogenic Center: Recent Developments. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801647] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiang‐Hong He
- State Key Laboratory of Southwestern Chinese Medicine ResourcesChengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
| | - Yan‐Ling Ji
- State Key Laboratory of Southwestern Chinese Medicine ResourcesChengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine ResourcesChengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
- Ministry of Education Key Laboratory of Standardization of Chinese Medicine, School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine ResourcesChengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
| |
Collapse
|
29
|
Yang ZT, Zhao J, Yang WL, Deng WP. Enantioselective Construction of CF3-Containing Spirooxindole γ-Lactones via Organocatalytic Asymmetric Michael/Lactonization. Org Lett 2019; 21:1015-1020. [DOI: 10.1021/acs.orglett.8b04039] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhong-Tao Yang
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jianhong Zhao
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wu-Lin Yang
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wei-Ping Deng
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
30
|
Zhang J, Chan WL, Chen L, Ullah N, Lu Y. Creation of bispiro[pyrazolone-3,3′-oxindoles] via a phosphine-catalyzed enantioselective [3 + 2] annulation of the Morita–Baylis–Hillman carbonates with pyrazoloneyldiene oxindoles. Org Chem Front 2019. [DOI: 10.1039/c9qo00471h] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A [3 + 2] annulation between the Morita–Baylis–Hillman (MBH) carbonates and pyrazoloneyldiene oxindoles catalyzed by (S)-SITCP has been developed.
Collapse
Affiliation(s)
- Jing Zhang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
- Department of Chemistry
| | - Wai-Lun Chan
- Department of Chemistry
- National University of Singapore
- Singapore
- 117543 Singapore
| | - Ligong Chen
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| | - Nisar Ullah
- Chemistry Department
- King Fahd University of Petroleum and Materials
- Dhahran 31261
- Saudi Arabia
| | - Yixin Lu
- Department of Chemistry
- National University of Singapore
- Singapore
- 117543 Singapore
- National University of Singapore (Suzhou) Research Institute
| |
Collapse
|
31
|
You Y, Lu WY, Wang ZH, Chen YZ, Xu XY, Zhang XM, Yuan WC. Organocatalytic Asymmetric [3 + 2] Cycloaddition of N-2,2,2-Trifluoroethylisatin Ketimines with β-Trifluoromethyl Electron-Deficient Alkenes: Access to Vicinally Bis(trifluoromethyl)-Substituted 3,2′-Pyrrolidinyl Spirooxindoles. Org Lett 2018; 20:4453-4457. [DOI: 10.1021/acs.orglett.8b01730] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wen-Ya Lu
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong-Zheng Chen
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Xiao-Ying Xu
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiao-Mei Zhang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Wei-Cheng Yuan
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| |
Collapse
|
32
|
Mei GJ, Shi F. Catalytic asymmetric synthesis of spirooxindoles: recent developments. Chem Commun (Camb) 2018; 54:6607-6621. [DOI: 10.1039/c8cc02364f] [Citation(s) in RCA: 286] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The past four years have witnessed significant developments in the field of the catalytic asymmetric synthesis of spirooxindoles, and this feature article outlines the recent progress in this area, including the contributions of our group. This article is divided into sections according to the size and type of the generated spiro-ring fused at the C3-position of the oxindole core.
Collapse
Affiliation(s)
- Guang-Jian Mei
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Feng Shi
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| |
Collapse
|