1
|
Zhu Y, Zhang Y, Zhao X, Lu K. Photochemical alkylation of quinoxalin-2(1 H)-ones with N, N, N', N'-tetraalkylethylenediamine. Org Biomol Chem 2024; 22:8951-8957. [PMID: 39405168 DOI: 10.1039/d4ob01494d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
A visible-light-induced C-3 alkylation of quinoxalin-2(1H)-ones with N,N,N',N'-tetraalkylethylenediamine was achieved without an external photocatalyst. The mechanism showed that quinoxalin-2(1H)-ones could act as photocatalysts. The accessibility of the reagents and the green and mild reaction conditions made this protocol an alternative method to access C-3 alkylated quinoxalin-2(1H)-ones.
Collapse
Affiliation(s)
- Yaqing Zhu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
| | - Yi Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
| | - Xia Zhao
- College of Chemistry, TianJin Key Laboratory of Structure and Performance for Functional Molecules, TianJin Normal University, TianJin, 300387, China
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
| |
Collapse
|
2
|
Wu L, Wang Z, Qiao Y, Xie L, Wang Q. Photoexcited nitroarenes for alkylation of quinoxalin-2(1 H)-ones. Chem Commun (Camb) 2024; 60:11311-11314. [PMID: 39295587 DOI: 10.1039/d4cc04315d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
A straightforward method for the dehydrogenative alkylation of quinoxalin-2(1H)-ones with alkylbenzenes has been developed, facilitated by a photoexcited nitroarene. The reaction's success hinges on the dual role of the photoexcited nitroarene molecule, acting as both a hydrogen atom transfer (HAT) reagent and an oxidant. This technique is both atom-economical and cost-effective, due to the readily available nitroarene, which serves as the sole intermediary in the reaction process.
Collapse
Affiliation(s)
- Lingang Wu
- School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252000, Shandong, People's Republic of China.
| | - Zhaoxue Wang
- School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252000, Shandong, People's Republic of China.
| | - Yanling Qiao
- School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252000, Shandong, People's Republic of China.
| | - Lei Xie
- School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252000, Shandong, People's Republic of China.
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| |
Collapse
|
3
|
Srinivasu V, Pattanaik S, Sureshkumar D. Photoredox cross-dehydrogenative C(sp 2)-C(sp 3) coupling of heteroarenes with secondary amines through 1,5-HAT. Chem Commun (Camb) 2024; 60:9757-9760. [PMID: 39150701 DOI: 10.1039/d4cc02818j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The functionalization of α-C(sp3)-H bonds in amines has become a focal point of contemporary research. Here, we report a new approach utilizing photocatalysis α-C(sp3)-H bond functionalization in alicyclic and aliphatic secondary amines facilitated by intramolecular 1,5-hydrogen atom transfer (HAT). This finding unlocks a sustainable method for rapidly constructing complex heterocyclics via cross-dehydrogenative C-C coupling of protected amines and nitrogen-containing heterocycles. This protocol boasts broad applicability to various substrates, exhibits tolerance to numerous functional groups, and supports the late-stage modification of drug molecules.
Collapse
Affiliation(s)
- Vinjamuri Srinivasu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India.
| | - Swadhin Pattanaik
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Berhampur-760010, Odisha, India
| | - Devarajulu Sureshkumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India.
| |
Collapse
|
4
|
Singh N, Sharma A, Singh J, Pandey AP, Sharma A. Visible Light-Induced Electron-Donor-Acceptor-Mediated C-3 Coupling of Quinoxalin-2(1 H)-ones with Unactivated Aryl Iodides. Org Lett 2024; 26:6471-6476. [PMID: 39042831 DOI: 10.1021/acs.orglett.4c02296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Visible light-induced C-3 arylation of quinoxalin-2(1H)-ones with abundantly available aryl iodides with good yields via an electron-donor-acceptor (EDA)-complex formation have been accomplished. The radical scavenging, Electron paramagnetic resonance (EPR), UV-visible experiments, density functional theory (DFT), and quantum yield studies revealed that the reaction went through a radical pathway via a single electron transfer (SET) process. Furthermore, the protocol could also be applied to the synthesis of biologically active molecules, illustrating the practicality of the present protocol.
Collapse
Affiliation(s)
- Nihal Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Anoop Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Jitender Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Amar Prakash Pandey
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Anuj Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
5
|
Jiao H, Jing Y, Niu K, Song H, Liu Y, Wang Q. Photoinduced Dehydrogenative Amination of Quinoxalin-2(1 H)-ones with Air as an Oxidant. J Org Chem 2024; 89:5371-5381. [PMID: 38551317 DOI: 10.1021/acs.joc.3c02781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
A facile and eco-friendly photoinduced dehydrogenative amination of quinoxalin-2(1H)-ones with aliphatic amines without any metal, strong oxidant, and photocatalyst has been established for the first time. This reaction proceeding efficiently with air as the sole oxidant at room temperature obtains a wide range of 3-aminoquinoxaline-2(1H)-ones in high yields with excellent functional group tolerance. The mechanistic studies show an interesting involvement of quinoxalin-2(1H)-ones as a photosensitizer, which eliminates the requirement for external photocatalysts.
Collapse
Affiliation(s)
- Haoran Jiao
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Yue Jing
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Kaikai Niu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
6
|
Niu KK, Cui J, Dong RZ, Yu S, Liu H, Xing LB. Visible-light-mediated direct C3 alkylation of quinoxalin-2(1 H)-ones using alkanes. Chem Commun (Camb) 2024; 60:2409-2412. [PMID: 38323602 DOI: 10.1039/d3cc06285f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Due to the high C-H bond dissociation energy of alkanes, the utilization of alkanes as alkyl radical precursors for C-H functionalization of heteroarenes is synthetically captivating but practically challenging, especially under metal- and photocatalyst-free conditions. We report herein a mild and practical visible-light-mediated method for C-H alkylation of quinoxalin-2(1H)-ones using trifluoroacetic acid as a hydrogen atom transfer reagent and air as an oxidant. This mild protocol was performed under metal- and photocatalyst-free circumstances and presented good functional-group tolerance as well as a broad substrate scope.
Collapse
Affiliation(s)
- Kai-Kai Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Jing Cui
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Rui-Zhi Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| |
Collapse
|
7
|
Khade VV, Bhowmick A, Thube AS, Bhat RG. Direct Access to Strained Fused Dihalo-Aziridino Quinoxalinones via C3-Alkylation Followed by Tandem Cyclization. J Org Chem 2023. [PMID: 37262098 DOI: 10.1021/acs.joc.3c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Quinoxalinones are a privileged class of compounds, and their structural framework is found in many bioactive compounds, natural compounds, and pharmaceuticals. Quinoxalinone is a promising scaffold for different types of functionalization, and the slight modification of the quinoxalinone skeleton is known to offer a wide range of compounds for drug discovery. Owing to the importance of the quinoxalinone scaffold, we have developed a base-mediated protocol for the C3-alkylation of quinoxalinone followed by tandem cyclization to access novel types of strenuous and fused dihalo-aziridino-quinoxalinone heterocycles via the construction of C-C and C-N bonds. The protocol proved to be simple and practical to access desired fused quinoxalinone heterocycles in excellent yields (up to 98% yield). As an application, the highly functionalized fused dihalo-aziridino-quinoxalinone molecule has been further utilized for mono-dehalogenation under visible light irradiation and selective amide reduction. Moreover, the protocol has also been demonstrated on a gram scale.
Collapse
Affiliation(s)
- Vikas V Khade
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Pune, Maharashtra 411008, India
| | - Anindita Bhowmick
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Pune, Maharashtra 411008, India
| | - Archana S Thube
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Pune, Maharashtra 411008, India
| | - Ramakrishna G Bhat
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Pune, Maharashtra 411008, India
| |
Collapse
|
8
|
Shen L, Yuan JW, Zhang B, Song SY, Yang LR, Xiao YM, Zhang SR, Qu LB. Photoredox-catalyzed three-component difluorobenzylation of quinoxalin-2(1 H)-ones with unactivated vinylarenes and BrCF 2CO 2Et/HCF 2CO 2H. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2023. [DOI: 10.1515/znb-2022-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Abstract
An environmentally friendly strategy for the photo-catalyzed three-component reaction between quinoxalin-2(1H)-ones, vinylarenes, with inexpensive and easily accessible ethyl bromodifluoroacetate/sodium difluoromethanesulfinate is described. This protocol exhibits mild conditions, high efficiency, and excellent functional group tolerance, providing a highly efficient approach for the synthesis of difluorobenzylated quinoxalin-2(1H)-ones by the formation of two carbon-carbon bonds. A radical mechanism is responsible for this three-component transformation.
Collapse
Affiliation(s)
- Lu Shen
- School of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Jin-Wei Yuan
- School of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Bing Zhang
- School of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Sai-Yi Song
- School of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Liang-Ru Yang
- School of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Yong-Mei Xiao
- School of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Shou-Ren Zhang
- Henan Key Laboratory of Nanocomposites and Applications , Institute of Nanostructured Functional Materials, Huanghe Science and Technology College , Zhengzhou 450006 , P. R. China
| | - Ling-Bo Qu
- College of Chemistry , Zhengzhou University , Zhengzhou 450001 , P. R. China
| |
Collapse
|
9
|
Zheng YN, Cai XE, Wu HL, Zhou Y, Tian WC, Ruan Y, Liu H, Wei WT. Metal- and Base-Free Radical Cascade Cyclization/Hydrolysis of CN-Containing 1,6-Enynes with Ethers to Access Polyheterocycles. Chem Asian J 2023; 18:e202201149. [PMID: 36550634 DOI: 10.1002/asia.202201149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
A convenient and straightforward approach for the radical cascade cyclization/hydrolysis of CN-containing 1,6-enynes with simple ethers under metal- and base-free conditions is described. This strategy provides a variety of valuable ethers-substituted polyheterocycles via the construction of three C-C bonds, one C=O bond, and two new six-membered rings within a single procedure. The resulting products can smoothly undergo follow-up conversions to various useful scaffolds. The methodology shows excellent functional group tolerance, high step- and atom- economy, and mild reaction conditions, which can be further scaled up to gram quantity in a satisfactory yield.
Collapse
Affiliation(s)
- Yan-Nan Zheng
- School of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, Zhejiang, P. R. China
| | - Xue-Er Cai
- School of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, Zhejiang, P. R. China
| | - Hong-Li Wu
- School of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, Zhejiang, P. R. China
| | - Yu Zhou
- School of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, Zhejiang, P. R. China
| | - Wen-Chan Tian
- School of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, Zhejiang, P. R. China
| | - Yiping Ruan
- School of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, Zhejiang, P. R. China
| | - Hongxin Liu
- College of Chemistry and Materials Engineering, Wenzhou University, 325035, Wenzhou, P. R. China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, Zhejiang, P. R. China
| |
Collapse
|
10
|
Nongbe MC, Abollé A, Coeffard V, Felpin FX. Rose Bengal Immobilized on Cellulose Paper for Sustainable Visible‐Light Photocatalysis. Chempluschem 2022; 87:e202200242. [DOI: 10.1002/cplu.202200242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/18/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Medy C Nongbe
- Université Jean Lorougnon Guédé: Universite Jean Lorougnon Guede Laboratoire des Sciences et Technologies de l’Environnement (LSTE) COTE D'IVOIRE
| | - Abollé Abollé
- Universite Nangui Abrogoua Laboratoire de Thermodynamique et de Physico-Chimie du Milieu COTE D'IVOIRE
| | - Vincent Coeffard
- Nantes University: Universite de Nantes Department of Chemistry FRANCE
| | - Francois-Xavier Felpin
- Nantes University: Universite de Nantes UFR Sciences et Techniques, UMR CNRS 6230, CEISAM 2 Rue de la Houssiniere 44322 Nantes FRANCE
| |
Collapse
|
11
|
Ma C, Meng H, Li J, Yang X, Jiang Y, Yu B. Photocatalytic
Transition‐Metal‐Free
Direct
3‐Acetalation
of Quinoxaline‐2(
1
H
)‐ones. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chunhua Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Hui Meng
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Jing Li
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Xianguang Yang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Yuqin Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Bing Yu
- Green Catalysis Centre, College of Chemistry Zhengzhou University. Zhengzhou 450001 China
| |
Collapse
|
12
|
Peng S, Liu J, Yang LH, Xie LY. Sunlight Induced and Recyclable g-C 3N 4 Catalyzed C-H Sulfenylation of Quinoxalin-2(1 H)-Ones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155044. [PMID: 35956990 PMCID: PMC9370749 DOI: 10.3390/molecules27155044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
Abstract
A sunlight-promoted sulfenylation of quinoxalin-2(1H)-ones using recyclable graphitic carbon nitride (g-C3N4) as a heterogeneous photocatalyst was developed. Using the method, various 3-sulfenylated quinoxalin-2(1H)-ones were obtained in good to excellent yields under an ambient air atmosphere. Moreover, the heterogeneous catalyst can be recycled at least six times without significant loss of activity.
Collapse
|
13
|
Wang M, Liu J, Zhang Y, Sun P. Decarbonylative C3‐Alkylation of Quinoxalin‐2(1H)‐ones with Aliphatic Aldehydes via Photocatalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Jie Liu
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000 CHINA
| | | | | |
Collapse
|
14
|
A HCl-Mediated, Metal- and Oxidant-Free Photocatalytic Strategy for C3 Arylation of Quinoxalin(on)es with Arylhydrazine. Catalysts 2022. [DOI: 10.3390/catal12060633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A novel and simple HCl-mediated, photocatalytic method for quinoxaline(on)es C3-H arylation with arylhydrazine under transition metal catalyst- and oxidant-free conditions is presented. Various quinoxaline(on)es underwent this transformation smoothly, demonstrating a broad substrate tolerance and providing the corresponding aryl products in moderate to excellent yields. Mechanistic studies indicated that a radical pathway may be involved in this transformation.
Collapse
|
15
|
Wang M, Zhang Z, Xiong C, Sun P, Zhou C. Microwave‐Accelerated Cross‐Dehydrogenative Coupling of Quinoxalin‐2(1
H
)‐ones with Alkanes under Transition‐Metal‐Free Conditions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Min Wang
- Nanjing Normal University Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing 210023 China
- Huaibei Normal University Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education Huaibei Anhui 235000 China
| | - Zhongyi Zhang
- Huaibei Normal University Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education Huaibei Anhui 235000 China
| | - Chunxia Xiong
- Huaibei Normal University Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education Huaibei Anhui 235000 China
| | - Peipei Sun
- Nanjing Normal University Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing 210023 China
| | - Chao Zhou
- Huaibei Normal University Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education Huaibei Anhui 235000 China
| |
Collapse
|
16
|
Wang L, Li L, Gao Y, Mingli S, Liu J, Li P. Visible‐light‐induced site‐selective difunctionalization of 2,3‐dihydrofuran with quinoxalin‐2(1H)‐ones and peroxides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lei Wang
- Huaibei Normal University Chemistry 100 Dongshan Road 235000 Huaibei CHINA
| | - Laiqiang Li
- Huaibei Normal University Chemistry Huaibei CHINA
| | - Yanhui Gao
- Huaibei Normal University Chemistry Huaibei CHINA
| | - Sun Mingli
- Huaibei Normal University Chemistry Huaibei CHINA
| | - Jie Liu
- Huaibei Normal University Chemistry Huaibei CHINA
| | - Pinhua Li
- Huaibei Normal University Chemistry Huaibei CHINA
| |
Collapse
|
17
|
Kishor G, Ramesh V, Rao VR, Pabbaraja S, Adiyala PR. Regioselective C-3-alkylation of quinoxalin-2(1 H)-ones via C-N bond cleavage of amine derived Katritzky salts enabled by continuous-flow photoredox catalysis. RSC Adv 2022; 12:12235-12241. [PMID: 35517836 PMCID: PMC9053435 DOI: 10.1039/d2ra00753c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/24/2022] [Indexed: 11/26/2022] Open
Abstract
An efficient, transition metal-free visible-light-driven continuous-flow C-3-alkylation of quinoxalin-2(1H)-ones has been demonstrated by employing Katritzky salts as alkylating agents in the presence of eosin-y as a photoredox catalyst and DIPEA as a base at room temperature. The present protocol was accomplished by utilizing abundant and inexpensive alkyl amine (both primary and secondary alkyl) and as well as this a few amino acid feedstocks were converted into their corresponding redox-active pyridinium salts and subsequently into alkyl radicals. A wide variety of C-3-alkylated quinoxalin-2(1H)-ones were synthesized in moderate to high yields. Further this environmentally benign protocol is carried out in a PFA (Perfluoroalkoxy alkane) capillary based micro reactor under blue LED irradiation, enabling excellent yields (72% to 91%) and shorter reaction times (0.81 min) as compared to a batch system (16 h).
Collapse
Affiliation(s)
- Gandhari Kishor
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Vankudoth Ramesh
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Vadithya Ranga Rao
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Srihari Pabbaraja
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Praveen Reddy Adiyala
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
18
|
Zhang H, Xu J, Ouyang Y, Yue X, Zhou C, Ni Z, Li W. Molecular oxygen-mediated selective hydroxyalkylation and alkylation of quinoxalin-2(1H)-ones with alkylboronic acids. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Yuan YR, Li L, Bu X, Wang X, Sun R, Zhou MD, Wang H. Visible‐Light Photoredox‐Catalyzed Three‐Component Difluoromethylative Heteroarylation of Unactivated Alkenes. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ya-Ru Yuan
- Liaoning petrochemical University School of Petrochemical Engineering CHINA
| | - Lei Li
- Liaoning petrochemical University School of Petrochemical Engineering CHINA
| | - Xiubin Bu
- Shenyang Normal University Institute of Catalysis for Energy and Environment, College of Chemistry & Chemical Engineering CHINA
| | - Xin Wang
- Liaoning petrochemical University School of Petrochemical Engineering CHINA
| | - Ran Sun
- Liaoning petrochemical University School of Petrochemical Engineering CHINA
| | - Ming-Dong Zhou
- Liaoning petrochemical University School of Petrochemical Engineering CHINA
| | - He Wang
- Liaoning Shihua University School of Chemistry and Materials Science Dandong road 1, Wanghua District 113001 Fushun CHINA
| |
Collapse
|
20
|
Singh S, Dagar N, Roy SR. Photoinduced ligand to metal charge transfer enabling cerium mediated decarboxylative alkylation of quinoxalin-2(1 H)-ones. Chem Commun (Camb) 2022; 58:3831-3834. [PMID: 35234798 DOI: 10.1039/d2cc00840h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Here, we report the cerium-mediated decarboxylative alkylation of quinoxalin-2(1H)-ones utilizing feedstock carboxylic acids as a radical precursor via photoinduced-LMCT. This operationally simple protocol overcomes the limitation of the direct use of carboxylic acids to access alkyl radicals. Spectroscopic investigations reveal the photoinduced LMCT and CO2 evolving events. We have utilized a broad range of alkyl carboxylic acids (1° to 3° acids), amino acids and pharmaceutically-important acids as a coupling partner to synthesise the desired alkylated heterocyclic product in good to excellent yields.
Collapse
Affiliation(s)
- Swati Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Neha Dagar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
21
|
Wang Z, Liu Q, Liu R, Ji Z, Li Y, Zhao X, Wei W. Visible-light-initiated 4CzIPN catalyzed multi-component tandem reactions to assemble sulfonated quinoxalin-2(1H)-ones. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Zhang Y, Chen Y, Sun J, Wang J, Zhou M. Visible‐light‐promoted Radical Cyclization/Arylation Cascade for the Construction of
α,
α
‐Difluoro‐
γ
‐Lactam‐Fused
Quinoxalin‐2(
1
H
)‐Ones. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yun‐Chao Zhang
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| | - Yang Chen
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| | - Jing Sun
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| | - Jing‐Yun Wang
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| | - Ming‐Dong Zhou
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| |
Collapse
|
23
|
Guo X, Wang Y, Zhao Z, Wang Q, Zuo J, Wang L. Electrochemical Oxidative C—H Trifluoromethylation of Quinoxalin-2(1 H)-ones and the Performance Evaluation via Electro-descriptors. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Photocatalyst-free visible light induced decarboxylative alkylation of quinoxalin-2(1H)-ones with carboxylic acids. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Gao Q, Sun Z, Wu M, Guo Y, Han X, Yan J, Ha MN, Le QM, Xu Y. Di- tert-butyl peroxide as an effective two-carbon unit in oxidative radical cyclization toward 7-methylazolo[1,5- a]pyrimidines. Org Chem Front 2022. [DOI: 10.1039/d2qo00381c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
An unexpected oxidative radical cyclization with DTBP as the C2 cyclic unit enables the assembly of privileged 7-methylazolo[1,5-a]pyrimidines.
Collapse
Affiliation(s)
- Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Zhenhua Sun
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Manman Wu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Yimei Guo
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Xinya Han
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, P. R. China
| | - Jufen Yan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, P. R. China
| | - Minh Ngoc Ha
- VNU Key Laboratory of Advanced Materials for Green Growth, Faculty of Chemistry, University of Science, Vietnam National University, Hanoi 100000, Vietnam
| | - Quynh Mai Le
- Department of Plant Science, Faculty of Biology, University of Science, Vietnam National University, Hanoi 100000, Vietnam
| | - Yongtao Xu
- School of Medical Engineering, Henan International Joint Laboratory of Neural Information analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| |
Collapse
|
26
|
You G, Yan J. A CF
3
SO
2
Na‐Mediated Photocatalytic Strategy for Aerobic C3‐H Fluoroalkoxylation of Quinoxalinones with Fluoroalkyl Alcohols. ChemistrySelect 2021. [DOI: 10.1002/slct.202103693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Guirong You
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 China
- Pharmacy College Shandong First Medical University (Shandong Academy of Medical Sciences) Taian 271000 China
| | - Jizhong Yan
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 China
| |
Collapse
|
27
|
Xu J, Cai H, Shen J, Shen C, Wu J, Zhang P, Liu X. Photo-Induced Cross-Dehydrogenative Alkylation of Heteroarenes with Alkanes under Aerobic Conditions. J Org Chem 2021; 86:17816-17832. [PMID: 34875167 DOI: 10.1021/acs.joc.1c02125] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report a Minisci-type cross-dehydrogenative alkylation in an aerobic atmosphere using abundant and inexpensive cerium chloride as a photocatalyst and air as an oxidant. This photoreaction exhibits excellent tolerance to functional groups and is suitable for both heteroarene and alkane substrates under mild conditions, generating the corresponding products in moderate-to-good yields. Our method provides an alternative approach for the late-stage functionalization of valuable substrates.
Collapse
Affiliation(s)
- Jun Xu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.,Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| | - Heng Cai
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiabin Shen
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Chao Shen
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jie Wu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.,Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| | - Pengfei Zhang
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.,Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| |
Collapse
|
28
|
Li YN, Li XL, Wu JB, Jiang H, Liu Y, Guo Y, Zeng YF, Wang Z. Metal-free regioselective nitration of quinoxalin-2(1 H)-ones with tert-butyl nitrite. Org Biomol Chem 2021; 19:10554-10559. [PMID: 34854446 DOI: 10.1039/d1ob02015c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A metal-free coupling of quinoxalin-2(1H)-ones with tert-butyl nitrite has been developed. Distinctly from the previous functionalization of quinoxalin-2(1H)-ones, this nitration reaction took place selectively at the C7 or C5 position of the phenyl ring, affording a series of 7-nitro and 5-nitro quinoxalin-2(1H)-ones in moderate to good yields. Preliminary mechanistic studies revealed that the reaction may involve a radical process.
Collapse
Affiliation(s)
- Yi-Na Li
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Xue-Lin Li
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jin-Bo Wu
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Hong Jiang
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Yunmei Liu
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Yu Guo
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Yao-Fu Zeng
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhen Wang
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
29
|
Hu XY, Xu HF, Chen Q, Pan YL, Chen JZ. Synthesis of indolo[2,1- α]isoquinoline derivatives via metal-free radical cascade cyclization. Org Biomol Chem 2021; 19:10376-10384. [PMID: 34812822 DOI: 10.1039/d1ob01917a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present studies, we describe a convenient and efficient protocol for the synthesis of the indolo[2,1-α]isoquinoline core structure through the reaction of 2-aryl-N-acryloyl indoles and aryl or alkyl α-keto acids under air environment in four hours. The developed approach features broad substrate scope and good functional group tolerance under mild reaction conditions without a metal catalyst participation. A series of valuable indolo[2,1-α] isoquinoline derivatives bearing various functional groups were synthesized using this method in good to excellent yields. Based on a series of control experiments, a radical pathway was proposed to explain the experiment.
Collapse
Affiliation(s)
- Xu-Yang Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China.
| | - Hai-Feng Xu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China.
| | - Qiang Chen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China.
| | - You-Lu Pan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China.
| | - Jian-Zhong Chen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
30
|
Peng S, Liu JJ, Yang L. Alkylation of quinoxalin-2(1 H)-ones using phosphonium ylides as alkylating reagents. Org Biomol Chem 2021; 19:9705-9710. [PMID: 34726225 DOI: 10.1039/d1ob01858b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical and efficient methodology for the construction of 3-alkylquinoxalinones through base promoted direct alkylation of quinoxalin-2(1H)-ones with phosphonium ylides as alkylating reagents under metal- and oxidant-free conditions was developed. Various 3-alkylquinoxalin-2(1H)-ones were easily obtained in good to excellent yields. Tentative mechanistic studies suggest that this reaction is likely to involve a nucleophilic addition-elimination process.
Collapse
Affiliation(s)
- Sha Peng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan, 411105, PR China.
| | - Jun-Jia Liu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan, 411105, PR China.
| | - Luo Yang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan, 411105, PR China.
| |
Collapse
|
31
|
Jiang X, Du X, Chen K, Han H, Xu D, Zhu B, Jiang L, Fang L, Yu C. Metal-free C3 α-aminoalkylation of quinoxalin-2(1H)-ones with amines. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Rapid alkenylation of quinoxalin-2(1H)-ones enabled by the sequential Mannich-type reaction and solar photocatalysis. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Visible-light induced direct C-H difluoromethylation of quinoxalin-2(1H)-ones by [bis(difluoroacetoxy)iodo]benzene under catalysis-free conditions. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132217] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Visible-light-induced chemoselective reactions of quinoxalin-2(1H)-ones with alkylboronic acids under air/N2 atmosphere. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Singh S, Dagar N, Raha Roy S. Direct functionalization of quinoxalin-2(1H)-one with alkanes: C(sp 2)-H/C(sp 3)-H cross coupling in transition metal-free mode. Org Biomol Chem 2021; 19:5383-5394. [PMID: 34047750 DOI: 10.1039/d1ob00665g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Considering the significance of pharmaceutically important heterocycles, efficient and highly versatile protocols for the functionalization of diverse heterocycles with easily accessible feedstock are crucial. Here, we have reported selective alkylation of quinoxalin-2(1H)-one with a broad class of hydrocarbons having different C(sp3)-H bonds with varying bond strengths using di-tert-butyl peroxide (DTBP) as an alkoxyl radical mediator for hydrogen atom transfer (HAT). This dehydrogenative coupling approach utilizes feedstock chemicals such as cycloalkanes, cyclic ethers and alkyl arenes as coupling partners. This protocol exhibits good functional group compatibility and selectivity regarding both heterocycles and unactivated alkanes. Moreover, this methodology allows functionalization of relatively strong C-H bonds of adamantane and exclusive selectivity towards 3° C(sp3)-H bonds is observed. We also illustrate the applicability of this C(sp2)-H/C(sp3)-H cross-coupling for practical access to bioactive pharmaceuticals.
Collapse
Affiliation(s)
- Swati Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Neha Dagar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
36
|
Ding R, Li Y, Chang Y, Liu Y, Yu J, Lv Y, Hu J. Metal-Free Direct C-H Functionalization of Quinoxalin-2(1 H)-Ones to Produce 3-Vinylated Quinoxalin-2(1 H)-Ones in the Presence of Alkenes. Front Chem 2021; 9:672051. [PMID: 33996765 PMCID: PMC8119786 DOI: 10.3389/fchem.2021.672051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/06/2021] [Indexed: 11/29/2022] Open
Abstract
A novel and efficient C 3-H vinylation reaction with quinoxalin-2(1H)-one as the substrate, in the presence of alkenes, under metal-free conditions, is reported herein. The reaction leads to the formation of new carbon-carbon bonds that exhibit moderate to good reactivities. The vinylation of quinoxalin-2(1H)-ones, in the presence of alkenes, is an attractive process that can be potentially utilized to produce biologically active 3-vinylated quinoxalin-2(1H)-ones.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanna Lv
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Jinxing Hu
- School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
37
|
Guo J, Zhang L, Du X, Zhang L, Cai Y, Xia Q. Metal‐Free Direct Oxidative C−N Bond Coupling of Quinoxalin‐2(1
H
)‐ones with Azoles under Mild Conditions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jingwen Guo
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou 325035 P. R. China
| | - Lina Zhang
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou 325035 P. R. China
| | - Xinyue Du
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou 325035 P. R. China
| | - Liting Zhang
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou 325035 P. R. China
| | - Yuepiao Cai
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou 325035 P. R. China
| | - Qinqin Xia
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou 325035 P. R. China
| |
Collapse
|
38
|
Zhang H, Yang Z, Zhang H, Han Y, Zhao J, Zhang Y. The Cross‐Dehydrogenative Coupling Reaction of β‐Ketoesters with Quinoxalin‐2(1
H
)‐ones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hong‐Yu Zhang
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| | - Zibing Yang
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| | - Huizhen Zhang
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| | - Ya‐Ping Han
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| | - Jiquan Zhao
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| | - Yuecheng Zhang
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| |
Collapse
|
39
|
|
40
|
Jiang S, Tian XJ, Feng SY, Li JS, Li ZW, Lu CH, Li CJ, Liu WD. Visible-Light Photoredox Catalyzed Double C–H Functionalization: Radical Cascade Cyclization of Ethers with Benzimidazole-Based Cyanamides. Org Lett 2021; 23:692-696. [DOI: 10.1021/acs.orglett.0c03853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Si Jiang
- Hunan Provincial Key Laboratory of Material Protection for Electric Power and Transportation, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Xiao-Jing Tian
- Hunan Provincial Key Laboratory of Material Protection for Electric Power and Transportation, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Shu-Yao Feng
- Hunan Provincial Key Laboratory of Material Protection for Electric Power and Transportation, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Jiang-Sheng Li
- Hunan Provincial Key Laboratory of Material Protection for Electric Power and Transportation, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Zhi-Wei Li
- Hunan Provincial Key Laboratory of Material Protection for Electric Power and Transportation, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Cui-Hong Lu
- Hunan Provincial Key Laboratory of Material Protection for Electric Power and Transportation, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Wei-Dong Liu
- National Engineering Research Center for Agrochemicals, Hunan Research Institute of Chemical Industry, Changsha 410007, China
| |
Collapse
|
41
|
Wang H, Ying P, Yu J, Su W. Alternative Strategies Enabling Cross-Dehydrogenative Coupling: Access to C—C Bonds. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202009053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Meng N, Lv Y, Liu Q, Liu R, Zhao X, Wei W. Visible-light-induced three-component reaction of quinoxalin-2(1H)-ones, alkenes and CF3SO2Na leading to 3-trifluoroalkylated quinoxalin-2(1H)-ones. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.034] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
43
|
Liu X, Li W, Zhuang C, Cao H. Application of Photochemical/Electrochemical Synthesis in C—H Functionalization of Quinoxalin-2(1H)-one. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202103032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Xu J, Yang H, He L, Huang L, Shen J, Li W, Zhang P. Synthesis of ( E)-Quinoxalinone Oximes through a Multicomponent Reaction under Mild Conditions. Org Lett 2020; 23:195-201. [PMID: 33354970 DOI: 10.1021/acs.orglett.0c03918] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein, a novel method for the gram-scale synthesis of (E)-quinoxalinone oximes through a multicomponent reaction under mild conditions is described. Such a transformation was performed under transition-metal-free conditions, affording (E)-oximes in a moderate-to-good yield through recrystallization. Our methodology demonstrates a successful combination of a Mannich-type reaction and radical coupling, providing a green and practical approach for the synthesis of potentially bioactive quinoxalinone-containing molecules.
Collapse
Affiliation(s)
- Jun Xu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Huiyong Yang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Lei He
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Lin Huang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiabin Shen
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Wanmei Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
45
|
|
46
|
Direct decarboxylative C H 3-arylation of quinoxalin-2(H)-ones with aryl acyl peroxides leading to 3-arylquinoxalin-2(1H)-ones. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
47
|
Sun M, Wang L, Zhao L, Wang Z, Li P. Visible‐Light Photoredox Catalyzed C−N Coupling of Quinoxaline‐2(1
H
)‐ones with Azoles without External Photosensitizer. ChemCatChem 2020. [DOI: 10.1002/cctc.202000459] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mingli Sun
- Advanced Research Institute and Department of Chemistry Taizhou University Taizhou Zhejiang 318000 P. R. China
- Department of Chemistry Huaibei Normal University Huaibei Anhui 235000 P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry Taizhou University Taizhou Zhejiang 318000 P. R. China
- Department of Chemistry Huaibei Normal University Huaibei Anhui 235000 P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Shanghai 200032 P. R. China
| | - Lulu Zhao
- Advanced Research Institute and Department of Chemistry Taizhou University Taizhou Zhejiang 318000 P. R. China
- Department of Chemistry Huaibei Normal University Huaibei Anhui 235000 P. R. China
| | - Zhiming Wang
- Advanced Research Institute and Department of Chemistry Taizhou University Taizhou Zhejiang 318000 P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Shanghai 200032 P. R. China
| | - Pinhua Li
- Department of Chemistry Huaibei Normal University Huaibei Anhui 235000 P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Shanghai 200032 P. R. China
| |
Collapse
|
48
|
Si YF, Sun K, Chen XL, Fu XY, Liu Y, Zeng FL, Shi T, Qu LB, Yu B. Arylaminomethyl Radical-Initiated Cascade Annulation Reaction of Quinoxalin-2(1H)-ones Catalyzed by Recyclable Photocatalyst Perovskite. Org Lett 2020; 22:6960-6965. [DOI: 10.1021/acs.orglett.0c02518] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ya-Feng Si
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Kai Sun
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao-Lan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Xiao-Yang Fu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yan Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Biological and Pharmaceutical Engineering, Xinyang Agriculture & Forestry University, Xinyang 464000, China
| | - Fan-Lin Zeng
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Tao Shi
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ling-Bo Qu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
49
|
C(sp2)–H/O–H cross-dehydrogenative coupling of quinoxalin-2(1H)-ones with alcohols under visible-light photoredox catalysis. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63526-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
He XK, Lu J, Zhang AJ, Zhang QQ, Xu GY, Xuan J. BI-OAc-Accelerated C3-H Alkylation of Quinoxalin-2(1 H)-ones under Visible-Light Irradiation. Org Lett 2020; 22:5984-5989. [PMID: 32705873 DOI: 10.1021/acs.orglett.0c02080] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An efficient, photoredox-catalyst-free radical alkylation of quinoxalin-2(1H)-ones has been described. This reaction utilizes 4-alkyl-1,4-dihydropyridines (R-DHPs) as alkyl radical precursors and acetoxybenziodoxole (BI-OAc) as an electron acceptor to undergo single-electron transfer with photoexcited R-DHPs. The benign conditions allow for good compatibility in the scope of both quinoxalin-2(1H)-ones and R-DHPs. The synthetic value of the protocol was also demonstrated by the successful functionalization of natural products and drug-based complex molecules.
Collapse
Affiliation(s)
- Xiang-Kui He
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Juan Lu
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Ai-Jun Zhang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Qing-Qing Zhang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Guo-Yong Xu
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University), Ministry of Education, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|