1
|
Dick M, Jamal H, Liu YR, Celli JP, Lilge L. On the need for standardized reporting of photophysical parameters of in vitro photodynamic therapy studies. Photodiagnosis Photodyn Ther 2022; 41:103263. [PMID: 36587862 DOI: 10.1016/j.pdpdt.2022.103263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
In vitro dose escalation experiments are one of the first gatekeepers in therapeutic evaluation and development. This also holds for evaluating novel photosensitizers (PS) and Photodynamic Therapy (PDT) co-therapies as needed to provide dose response guidelines before engaging in further pre-clinical studies. The dose needed to achieve 50% cell kill (LD50) is a standard metric to report the potency of a therapeutic agents that is widely accepted for single-drug therapies. In reporting results of PDT experiments, which involve delivery of both drug and light, it is inherently more complicated to identify such a convenient dose response metric that actually captures the larger space of treatment parameters. In addition to ubiquitous sources of biological variability that apply broadly in biomedical research, PDT treatment efficacy is determined by multiple key parameters that may or may not have been documented, including PS concentration and light fluence, where the latter is itself a function of the spectral properties of the light source used (often not described), not to mention dose rate, fractionation and other parameters that potentially vary between individual studies. It is impossible to compare results between two study when, for example one reports LD50 PS concentration without providing essential light dosimetry details. Motivated by this challenge in comparing outcomes and establishing reproducibility of in vitro PDT studies, we endeavored to perform a meta-analysis of the reporting of PDT results by converting, where possible, the disparately reported experimental details into a consistent metric that could be used to compare across studies. In this context we adopt here the number of photons absorbed by photosensitizers per unit volume to affect a 50% decline in cell survival as a standardized metric. By choosing this metric one can acknowledge the quantum-based generation of cytotoxins. While this metric does not cover every possible source of variability between any two studies, for a PS with known optical properties, this does encapsulate PS concentration as well as irradiance and spectral properties of light delivered. For the sake of focus we adopt this approach for study of reported results with two photosensitizers, Protoporphyrin IX, either synthesized in the cells by aminolevulinic acid or administered exogenously, and Chlorin e6. A literature search was performed to identify in vitro studies with these two photosensitizers and collect necessary information to calculate the absorbed photon LD50 threshold for each study. Only approximately 1/10 of the manuscripts reporting on in vitro studies provide the minimum required information to calculate the threshold values. While the majority of the determined threshold values are within a factor of 10, the range of threshold values spanned close to 7 orders of magnitude for both photosensitizers. To contrast with single-agent therapies, a similar exercise was performed for chemotherapeutic drugs targeting cellular mitosis or tyrosine kinase inhibitors resulted in an LD50 or IC50 range of 1-2 orders of magnitude, with LD50 or IC50 values for a single cell line being within a factor of 5. This review underscores challenges in the reporting of in vitro PDT efficacy. In many cases it takes considerable effort to extract the necessary methodology information to make meaningful comparison between PDT studies. Only when results between studies can be compared is it possible to begin to assess reproducibility which, as shown here, can be a major issue. Hence, guidelines need to be developed and enforced through the peer review process for meaningful reporting of preclinical PDT results in order for the most promising sensitizers and co-therapies to be identified and translated into the clinic.
Collapse
Affiliation(s)
- Madison Dick
- Princess Margaret Cancer Centre at University Health Network, Toronto, Ontario, Canada
| | - Hunain Jamal
- Princess Margaret Cancer Centre at University Health Network, Toronto, Ontario, Canada
| | - Yi Ran Liu
- Department of Physics, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Jonathan P Celli
- Department of Physics, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Lothar Lilge
- Princess Margaret Cancer Centre at University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Sun Y, Geng X, Wang Y, Su X, Han R, Wang J, Li X, Wang P, Zhang K, Wang X. Highly Efficient Water-Soluble Photosensitizer Based on Chlorin: Synthesis, Characterization, and Evaluation for Photodynamic Therapy. ACS Pharmacol Transl Sci 2021; 4:802-812. [PMID: 33860203 DOI: 10.1021/acsptsci.1c00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Indexed: 01/10/2023]
Abstract
The clinical applications of many photosensitizers (PSs) are limited because of their poor water solubility, weak tissue penetration, low chemical purity, and severe toxicity in the absence of light. We designed a novel chlorin-based PS (designated as HPS) to achieve fluorescence image-guided photodynamic therapy (PDT) with efficient ROS generation. In addition to its simple fabrication process, HPS has other advantages such as excellent water solubility, strong NIR absorption, and high biocompatibility upon chemical functionalization for enhanced phototherapy. HPS exhibited high photodynamic performance against lung cancer and breast cancer cells by generating a large amount of singlet oxygen (1O2) under 654 nm laser irradiation. HPS accumulated into multiple organelles such as mitochondria and the endoplasmic reticulum and triggered cell apoptosis by laser exposure. In the tumor-bearing mice, in vivo, HPS showed an optimal half-life in circulation and achieved fluorescence-image-guided PDT within the irradiation window, resulting in effective tumor growth inhibition and the prolonged survival of animals. Moreover, the antitumor PDT effect of HPS was close to the clinical trial phase II stage of HPPH even at the low dosage of 0.32 mg/kg (under 75 J/cm2 laser), while the systemic safety of HPS was much higher. In conclusion, HPS is a novel water-soluble chlorin derivative with excellent PDT potential for clinical transformation.
Collapse
Affiliation(s)
- Yue Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Xiaorui Geng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Yihui Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Xiaomin Su
- Shannxi Blood Center, Xi'an 710061, The People's Republic of China
| | - Ruyin Han
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Jiangyue Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Xinyan Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Kun Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| |
Collapse
|
3
|
Jia M, Mai B, Liu S, Li Z, Liu Q, Wang P. Antibacterial effect of S-Porphin sodium photodynamic therapy on Staphylococcus aureus and multiple drug resistance Staphylococcus aureus. Photodiagnosis Photodyn Ther 2019; 28:80-87. [DOI: 10.1016/j.pdpdt.2019.08.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/07/2019] [Accepted: 08/26/2019] [Indexed: 11/16/2022]
|