1
|
Zhao J, Jin B, Tang Z. Unraveling photo-induced proton transfer mechanism and proposing solvent regulation manner for the two intramolecular proton-transfer-site BH-BA fluorophore. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122141. [PMID: 36446171 DOI: 10.1016/j.saa.2022.122141] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/31/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
To expound specific excited state processes of the novel excitation wavelength dependent emission BH-BA fluorophore for better subsequent applications, this wok mainly focus on exploring photo-induced hydrogen bonding geometrical changes, excited state intramolecular proton transfer (ESIPT) mechanism and related regulated behavior via solvent polarity. The differences of structural parameters, infrared (IR) vibrational spectra, core-valence bifurcation (CVB) index as well as electronic densities ρ(r) between S0 and S1 states related to dual hydrogen bonds (O1-H2···N3 and O4-H5···N6) reveal S1-state hydrogen bonding strength facilitate ESIPT behaviors for BH-BA system. Of particular note, O4-H5···N6 plays a more dominant role. Photo-induced intramolecular charge transfer (ICT) and variations of Hirshfled and NPA charges over atoms related to hydrogen bonding moieties promote the ESIPT tendency for BH-BA. Combined potential energy surfaces (PESs), transition state (TS) and intrinsic reaction coordinate (IRC) paths, we illustrate the excited state intramolecular single proton transfer (ESISPT) mechanism of BH-BA should occur along with O4-H5···N6 hydrogen bonding wire, which could be adjusted by surrounding solvent polarity.
Collapse
Affiliation(s)
- Jinfeng Zhao
- College of Physical Science and Technology, Shenyang Normal University, Shenyang 110034, China; Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China.
| | - Bing Jin
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Zhe Tang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China; Tianjin Key Laboratory of Drug Targeting and Bioimaging,Life and Health Intelligent Research Institute, Tianjin University of Technology Tianjin 300384,China.
| |
Collapse
|
2
|
Solvent effect on ESIPT process of N-(8-Quinolyl) salicylaldimine: A DFT/TD-DFT calculation. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Chen R, Li Q, Xu K, Ma J, Mu X, Wang T, Cao L, Teng B. Solvent conditions effect on the excited state intramolecular proton transfer mechanism and photophysical property of 1′-hydroxy-2′-acetonaphthone: A DFT/TD-DFT analysis. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Zhao G, Shi W, Xin X, Yang Y, Ma F, Li Y. Insights from computational analysis: Excited-state hydrogen-bonding interactions and ESIPT processes in phenothiazine derivatives. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121935. [PMID: 36265305 DOI: 10.1016/j.saa.2022.121935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Organic materials with Mechanofluorochromism (MFC) properties have potential application value. Phenothiazine derivatives are a class of substances with MFC properties that have been synthesized and reported in experiments (Dyes and Pigments 172 (2020) 107835). Dual fluorescence of a series of phenothiazine derivatives is observed in the experiment, which proved that the ESIPT process is carried out. In this work, we choose phenothiazine derivatives (C2PAHN, C4PAHN, C8PAHN) as models to theoretically analyze the influence of different alkyl chain lengths on the excited state intramolecular proton transfer (ESIPT). In addition, the shift value of fluorescence spectrum is related to the length of alkyl chain. The fluorescence shift of C2PAHN is the largest (6.31 nm), and that of C8PAHN is the smallest (2.40 nm). The theory of density functional theory (DFT) and time-dependent density functional theory (TD-DFT) are adopted to simulate the molecular dynamics in the ground state and excited state. The analysis of the optimized molecular geometry parameters and infrared vibrational spectroscopy (IR) illustrate the stronger hydrogen bonding of the excited state molecules, which is favorable for the progress of ESIPT. Fluorescence spectroscopy reveals that the appropriate increase or decrease of alkyl chains would change the photophysical properties of the molecules. Frontier molecular orbitals (FMOs) indicate that the rearrangement of electron density from electronic level to is the driving force of the ESIPT process. Reduction density gradient (RDG) surfaces and Natural Population Analysis (NPA) tentatively lead to the conclusion that alkyl chain length is inversely proportional to hydrogen bond strength. Finally, the data are qualitatively analyzed by scanning the potential energy curves, and it is concluded that the longer the alkyl chain, the weaker the hydrogen bonding effect and the more unfavorable the ESIPT process.
Collapse
Affiliation(s)
- Guijie Zhao
- School of Physics, Liaoning University, Shenyang 110036, PR China
| | - Wei Shi
- School of Physics, Liaoning University, Shenyang 110036, PR China
| | - Xin Xin
- School of Physics, Liaoning University, Shenyang 110036, PR China
| | - Yunfan Yang
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, PR China
| | - Fengcai Ma
- School of Physics, Liaoning University, Shenyang 110036, PR China.
| | - Yongqing Li
- School of Physics, Liaoning University, Shenyang 110036, PR China.
| |
Collapse
|
5
|
Li C, Hu B, Cao Y, Li Y. Unveiling the dehydrogenation mechanism of dihydrogen‐bonded phenol‐borane‐dimethylamine complex in the ground and excited states. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chaozheng Li
- School of Mechanical and Electrical Engineering Henan Institute of Science and Technology Xinxiang China
| | - Bo Hu
- School of Mechanical and Electrical Engineering Henan Institute of Science and Technology Xinxiang China
| | - Yonghua Cao
- School of Mechanical and Electrical Engineering Henan Institute of Science and Technology Xinxiang China
| | - Yongfeng Li
- School of Mechanical and Electrical Engineering Henan Institute of Science and Technology Xinxiang China
| |
Collapse
|
6
|
Song Y, Wang Q, Gao W, He Z, Wu Y. Effects of solvents on the excited‐state intramolecular proton transfer in 3‐HTC. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yao‐Dong Song
- School of Electronic, Electrical Engineering and Physics Fujian University of Technology Fuzhou Fujian China
| | - Qian‐Ting Wang
- Fujian Provincial Key Laboratory of Advanced Materials Processing and Application Fuzhou Fujian China
- Sanming University Sanming Fujian China
- Fujian Provincial Engineering Research Center of Die & Mold Fuzhou Fujian China
- Mould Technology Development Base of Fujian Province Fuzhou Fujian China
- Fuzhou Innovation Platform for Novel Materials and Mould Technology Fuzhou Fujian China
| | - Wei‐wei Gao
- School of Electronic, Electrical Engineering and Physics Fujian University of Technology Fuzhou Fujian China
| | - Zhixiong He
- School of Electronic, Electrical Engineering and Physics Fujian University of Technology Fuzhou Fujian China
| | - Yan Wu
- School of Electronic, Electrical Engineering and Physics Fujian University of Technology Fuzhou Fujian China
| |
Collapse
|
7
|
Zhao G, Shi W, Xin X, Ma F, Li Y. Solvent dependence of ESIPT process in 2-(2-carbonmethoxy-3,4-dichloro-6-hydroxyphenyl) compounds. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118807] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Liu X, Wang Y, Wang Y, Tao Y, Fei X, Tian J, Hou Y. Solvent effect on the excited-state intramolecular double proton transfer of 1,3-bis(2-pyridylimino)-4,7-dihydroxyisoindole. Photochem Photobiol Sci 2021; 20:1183-1194. [PMID: 34463933 DOI: 10.1007/s43630-021-00091-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023]
Abstract
Density functional theory (DFT) and time-dependent density functional theory (TDDFT) are used to study the solvatochromic effect and the excited-state intramolecular double proton transfer (ESIDPT) of 1,3-Bis(2-pyridylimino)-4,7-dihydroxyisoindole (BPI-OH) in different kinds of solvents. The hydrogen bonding parameters and IR spectra reveal that in the excited state, the strength of excited hydrogen bond increase with the decrease of solvent polarity. Furthermore, the reduction density gradient (RDG) analysis confirms the corresponding conclusion. Frontier molecular orbitals (FMOs) are analyzed, illuminating that the smaller the polarity of solvent, the smaller the energy gap between the HOMO and LUMO. The structures of BPI-OH (N) (normal), BPI-OH (T1) (single), and BPI-OH (T2) (double) were optimized. Previous reports found the double protons in BPI-OH molecule are transferred step-by-step process BPI-OH(N)→BPI-OH(T1)→BPI-OH(T2) in the ground state (S0) and the first excited singlet state (S1). Here, the potential energy curves of O1-H2 and O4-H5 in the S0 and S1 states were scanned in four kinds of solvents, respectively. It was found that in S1 state, BPI-OH(N)→BPI-OH(T1) was more prone to proton transfer than BPI-OH(T1)→BPI-OH(T2). In addition, by comparing the reaction energy barriers of the four kinds of solvents, it can be found that ESIPT is difficult to occur with the increase of solvent polarity. Meanwhile, it was also studied that MeOH as an explicit solvent was more likely to promote the ESIPT process than other implicit solvents.
Collapse
Affiliation(s)
- Xiumin Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, People's Republic of China.
| | - Yuxi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Yaping Tao
- College of Physics and Electronic Information, Luoyang Normal University, Luoyang, 471022, People's Republic of China
| | - Xu Fei
- Lab Analyst of Network Information Center, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Yingmin Hou
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, People's Republic of China.
| |
Collapse
|
9
|
Wang Y, Guo Y, Wu Z, Zhang H, Wang C, Zhao G. Conformational torsion, intramolecular hydrogen bonding and solvent effects in intersystem crossing of singlet-triplet excited states for heavy-atom-free organic long persistent luminescence. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Qi Y, Wang Y, Tang Z, Liu J, Hou Y, Gao Z, Tian J, Fei X. Theoretical study on the ESIPT of fluorescent probe molecules N-(2-(4-(dimethylamino)phenyl)-3-hydroxy-4-oxo-4h -chromen-6-yl) butyramide in different solvents. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113614] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Hao J, Yang Y. Unveiling the effect of solvent polarity on the excited state intramolecular proton transfer mechanism of new 3-hydroxy-4-pyridylisoquinoline compound. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 232:118082. [PMID: 32086041 DOI: 10.1016/j.saa.2020.118082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/18/2020] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
The new 3-hydroxy-4-pyridylisoquinoline compound is attractive and promising lead structure in drug discovery. The pronounced sensitivity of its emission property toward solvent polarity effect was presented in experiment (J. Org. Chem, 2019, 84, 3011). Nevertheless, the experiment was lack of solvent polarity effect on the excited state intramolecular proton transfer (ESIPT) mechanism in detail. In this study, the ESIPT process of this molecule in different polarity solvents were comprehensively expounded by density functional theory (DFT) and time-dependent DFT (TDDFT) methods. In order to ensure the accuracy of the experiment and roundly explore in theoretical level, two ESIPT pathways (1 and 2) based on the N1 and N2 forms of studied molecule were proposed, among which the ESIPT pathway 1 was derived from experiment. The calculated electronic spectrum of both N1 and N2 forms were rather comparable with the experiment. The calculated intramolecular hydrogen bond (IHB) parameters and infrared (IR) vibration spectra determined the enhancement of IHBs at the S1 state under different solvents for both N1 and N2 forms. The frontier molecular orbitals (FMOs) analysis proved that the intramolecular charge transfer (ICT) taken place during photoexcitation. The potential energy curves (PECs) at the S0 and S1 states were constructed to illustrate the solvent polarity effect on ESIPT mechanism. According to potential energy barriers (PEBs) on the PECs at S1 state, it is concluded that the ESIPT pathway 1 was forbidden with exceedingly high PEBs (24.585-25.322 kcal/mol), while the ESIPT pathway 2 was feasible with enough low PEBs (0.100-0.510 kcal/mol), which suggested the inconsequence of the experiment. Based on the PEBs of ESIPT pathway 2 in different solvent, the effect of solvent polarity on ESIPT mechanism was depicted. The results are as follows: the S1 state IHB intensity was enhanced with increasing solvent polarity; the extent of ICT was decreased with the increment of solvent polarity; the S1 state PEB was decreased as the solvent polarity increased. Indeed in short, the ESIPT reaction became more and more likely as the solvent polarity enhanced. We believe that this investigation will be useful to the utilization and development of property for such photochemical substances.
Collapse
Affiliation(s)
- Jiaojiao Hao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yang Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
12
|
Han J, Cao B, Zhang X, Su X, Diao L, Yin H, Shi Y. Size dependent hydrogen-bonded methanol wires regulating the fluorescence On-Off of 1-H-pyrrolo[3,2-h]quinoline·(MeOH)n=1,2 complexes with ESMPT. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Gude V, Karmakar M, Dey A, Datta PK, Biradha K. Is the origin of green fluorescence in unsymmetrical four-ring bent-core liquid crystals single or double proton transfer? Phys Chem Chem Phys 2020; 22:4731-4740. [DOI: 10.1039/c9cp06307b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The origin of green fluorescence in unsymmetrical four-ring bent-core liquid crystals (BCLCs) is not understood clearly.
Collapse
Affiliation(s)
- Venkatesh Gude
- Department of Chemistry
- Indian Institute of Technology-Kharagpur
- Kharagpur
- India
| | - Manobina Karmakar
- Department of Physics, Indian Institute of Technology-Kharagpur
- Kharagpur
- India
| | - Avishek Dey
- Department of Chemistry
- Indian Institute of Technology-Kharagpur
- Kharagpur
- India
| | | | - Kumar Biradha
- Department of Chemistry
- Indian Institute of Technology-Kharagpur
- Kharagpur
- India
| |
Collapse
|
14
|
Zhao J, Dong H, Yang H, Zheng Y. Aggregation Promotes Excited-State Intramolecular Proton Transfer for Benzothiazole-Substituted Tetraphenylethylene Compound. ACS APPLIED BIO MATERIALS 2019; 2:5182-5189. [DOI: 10.1021/acsabm.9b00818] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jinfeng Zhao
- School of Physics, Shandong University, Jinan 250100, China
| | - Hao Dong
- School of Physics, Shandong University, Jinan 250100, China
| | - Huan Yang
- School of Physics, Shandong University, Jinan 250100, China
| | - Yujun Zheng
- School of Physics, Shandong University, Jinan 250100, China
| |
Collapse
|
15
|
4’-Methoxy-3-hydroxyflavone excited state intramolecular proton transfer reaction in alcoholic solutions: Intermolecular versus intramolecular hydrogen bonding effect. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Chen Y, Yang Y, Zhao Y, Liu S, Li Y. Effect of solvent environment on excited state intramolecular proton transfer in 2-(4-(dimethylamino)phenyl)-3-hydroxy-6,7-dimethoxy-4h-chromen-4-one. Phys Chem Chem Phys 2019; 21:17711-17719. [PMID: 31367718 DOI: 10.1039/c9cp03752g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The new ratiometric fluorescent probe 2-(4-(dimethylamino)phenyl)-3-hydroxy-6,7-dimethoxy-4h-chromen-4-one (HOF) monitoring of methanol in biodiesel was discovered experimentally (T. Y. Qin et al., Sens. Actuators, B, 2018, 277, 484-491). But the experimental study did not report the reaction mechanism in detail. In this study, density functional theory (DFT) and time-density functional theory (TDDFT) methods were used to theoretically study the excited-state intramolecular proton transfer (ESIPT) process of the HOF molecule. The molecular structure in the ground state and the excited state was optimized, and the infrared vibrational spectra, the frontier molecular orbitals, the charge transfer, the potential energy curves and the transition-state structures were calculated. The calculated results prove that the solvent polarity has a great influence on the ESIPT reaction of the HOF molecule. As the solvent polarity increased, the intensity of the intramolecular hydrogen bond decreased, and ESIPT was more difficult to occur. This work has studied the mechanism of the ESIPT reaction in more detail, and paved the way for future research on HOF molecules.
Collapse
Affiliation(s)
- Yunpeng Chen
- Department of Physics, Liaoning University, Shenyang 110036, P. R. China.
| | | | | | | | | |
Collapse
|
17
|
Liu S, Zhao Y, Zhang C, Lin L, Li Y, Song Y. The novel excited state intramolecular proton transfer broken by intermolecular hydrogen bonds in HOF system. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 219:164-172. [PMID: 31035126 DOI: 10.1016/j.saa.2019.04.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/13/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
2-(4-(Dimethylamino)phenyl)-3-hydroxy-6,7-dimethoxy-4Hchromen-4-one (HOF) was synthesized in experiment (Wang et al., Sensor. Actuat. B-Chem. 277 (2018) 484), and its photophysical and photochemical properties was reported. However the corresponding full theoretical interpretation of mechanisms is inadequate. In the present research, the intermolecular hydrogen bond structure of HOF-methanol complex (HOF-2M) was found, and mechanism of alcohols monitoring of HOF was deeply studied using the density functional theory (DFT) and time-dependent density functional theory (TDDFT). The enhancing mechanism of the excited state hydrogen bond is verified by analyzing the hydrogen bond parameters, infrared spectra and frontier molecular orbitals. Importantly, the reduced density gradient visual analysis and topological quantificational analysis confirm that the intramolecular hydrogen bond of HOF is broken by strong intermolecular hydrogen bonds of HOF-2M using the Atoms-In-Molecule theory. The obtained absorption and emission spectra are found to agree well with the experimental results and the complete quenched keto-emission in methanol and ethanol solvents provide a suitable sensing mechanism for detecting alcohols. The reaction path of the excited state intramolecular proton transfer for HOF is explained in detail through the constructed potential energy curves.
Collapse
Affiliation(s)
- Songsong Liu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Yu Zhao
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China; Department of Physics, Liaoning University, Shenyang 110036, China
| | - Changzhe Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Lili Lin
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Yongqing Li
- Department of Physics, Liaoning University, Shenyang 110036, China.
| | - Yuzhi Song
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| |
Collapse
|
18
|
A theoretical investigation on the excited state intramolecular single or double proton transfer mechanism of a salicyladazine system. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201800490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Shi W, Yang Y, Zhao Y, Li Y. The solvent effect on the excited-state intramolecular proton transfer of cyanine derivative molecules. Org Chem Front 2019. [DOI: 10.1039/c9qo00230h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Essential comprehension of the ESIPT mechanism in different solvents is helpful to design excellent fluorescent probes for lysosome organelles.
Collapse
Affiliation(s)
- Wei Shi
- Department of Physics
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Yunfan Yang
- Department of Physics
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Yu Zhao
- Department of Physics
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Yongqing Li
- Department of Physics
- Liaoning University
- Shenyang 110036
- P. R. China
| |
Collapse
|
20
|
Sun C, Su X, Zhou Q, Shi Y. Regular tuning of the ESIPT reaction of 3-hydroxychromone-based derivatives by substitution of functional groups. Org Chem Front 2019. [DOI: 10.1039/c9qo00722a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The electron-withdrawing ability of an atom and length of substitution groups would affect the ESIPT reaction and photophysical properties of 3-hydroxychromone-based derivatives.
Collapse
Affiliation(s)
- Chaofan Sun
- Institute of Atomic and Molecular Physics
- Jilin University
- Changchun 130012
- China
| | - Xing Su
- Institute of Atomic and Molecular Physics
- Jilin University
- Changchun 130012
- China
| | - Qiao Zhou
- Institute of Atomic and Molecular Physics
- Jilin University
- Changchun 130012
- China
| | - Ying Shi
- Institute of Atomic and Molecular Physics
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
21
|
Li Y, Zhao Y, Yang Y, Shi W, Fan X. Revelation solvent effects: excited state hydrogen bond and proton transfer of 2-(benzo[ d]thiazol-2-yl)-3-methoxynaphthalen-1-ol. Org Chem Front 2019. [DOI: 10.1039/c9qo00518h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
ESIPT reaction of an MMT molecule is gradually inhibited with increasing solvent polarity.
Collapse
Affiliation(s)
- Yongqing Li
- Department of Physics
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Yu Zhao
- Department of Physics
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Yunfan Yang
- Department of Physics
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Wei Shi
- Department of Physics
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Xiaoxing Fan
- Department of Physics
- Liaoning University
- Shenyang 110036
- P. R. China
| |
Collapse
|
22
|
Qi Y, Lu M, Wang Y, Tang Z, Gao Z, Tian J, Fei X, Li Y, Liu J. A theoretical study of the ESIPT mechanism of 3-hydroxyflavone derivatives: solvation effect and the importance of TICT for its dual fluorescence properties. Org Chem Front 2019. [DOI: 10.1039/c9qo00634f] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
As the dielectric constant decreases, the ESIPT reaction occurs more easily and TICT is good at emitting double fluorescence.
Collapse
Affiliation(s)
- Yutai Qi
- School of Biological Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Meiheng Lu
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Science
- Dalian 116023
- China
| | - Yi Wang
- School of Biological Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Zhe Tang
- Institute of Molecular Sciences and Engineering
- Shandong University
- Qing dao 266237
- P. R. China
| | - Ziqing Gao
- School of Biological Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Jing Tian
- School of Biological Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Xu Fei
- Lab Analyst of Network Information Center
- Dalian Polytechnic University
- Dalian
- P. R. China
| | - Yao Li
- School of Light Industry & Chemical Engineering
- Dalian Polytechnic University
- Dalian
- P. R. China
| | - Jianyong Liu
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Science
- Dalian 116023
- China
| |
Collapse
|