1
|
He Y, He TJ, Cheng X, Wei Y, Wang H, Lin YW. Phosphine-catalyzed dearomative [3+2] cycloaddition of 4-nitroisoxazoles with allenoates or Morita-Baylis-Hillman carbonates. Chem Commun (Camb) 2024; 60:6961-6964. [PMID: 38887994 DOI: 10.1039/d4cc02231a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
An efficient phosphine-catalyzed dearomative [3+2] annulation of 4-nitroisoxazoles with allenoates or Morita-Baylis-Hillman carbonates has been established for the convenient synthesis of bicyclic isoxazoline derivatives. This reaction approach showed a broad substrate scope, high functional group compatibility, and excellent regioselectivity and diastereoselectivity. Furthermore, the success at the gram-scale and synthetic applications of the obtained compound 3a demonstrate the great potential of this methodology for practical applications in organic synthesis.
Collapse
Affiliation(s)
- Yongjun He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, P. R. China.
| | - Tian-Juan He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, P. R. China.
| | - Xiufang Cheng
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, P. R. China.
| | - Yibo Wei
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, P. R. China.
| | - Huamin Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, P. R. China.
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, P. R. China.
- Laboratory of Protein Structure and Function, University of South China Medical School, Hengyang, P. R. China
| |
Collapse
|
2
|
Qin JH, Xiong ZQ, Cheng C, Hu M, Li JH. Electroreductive Carboxylation of Propargylic Acetates with CO 2: Access to Tetrasubstituted 2,3-Allenoates. Org Lett 2023; 25:9176-9180. [PMID: 38113454 DOI: 10.1021/acs.orglett.3c03735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
An electroreductive carboxylation of propargylic alcohols with CO2 and then workup with TMSCHN2 to construct tetrasubstituted 2,3-allenoates is developed. This method allows the incorporation of an external ester group into the resulting allene system through electroreduction, carboxylation, and deacetoxylation cascades. Mechanistically, electricity on/off experiments and cyclic voltammetry analysis support the preferential generation of the CO2 radical anion or the 3-aryl propargylic acetate radical anion based on the electron nature of the aryl rings.
Collapse
Affiliation(s)
- Jing-Hao Qin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhi-Qiang Xiong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Chaozhihui Cheng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Ming Hu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China
| |
Collapse
|
3
|
Li M, Sun GQ, Liu YY, Li SX, Liu HC, Qiu YF, Chen DP, Wang XC, Liang YM, Quan ZJ. Nickel-Catalyzed Three-Component Tandem Radical Cyclization 1,5-Difunctionalization of 1,3-Enynes and Alkyl Bromide. J Org Chem 2023; 88:1403-1410. [PMID: 36656018 DOI: 10.1021/acs.joc.2c02271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A nickel-catalyzed three-component tandem radical cyclization reaction of aryl bromides with 1,3-enynes and aryl boric acids to construct γ-lactam-substituted allene derivatives has been described. This protocol provides lactam alkyl radicals through the free radical cyclization process, which can be effectively used to participate in the subsequent multicomponent coupling reaction so that 1,3-enynes could directly convert into corresponding poly-substituted allene compounds. In addition, this efficient method enjoys a broad substrate scope and provides a series of 1,5-difunctionalized allenes in a one-pot reaction.
Collapse
Affiliation(s)
- Ming Li
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Guo-Qing Sun
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yu-Yu Liu
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Shun-Xi Li
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Hai-Chao Liu
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yi-Feng Qiu
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Dong-Pin Chen
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| |
Collapse
|
4
|
Bai JF, Tang J, Gao X, Jiang ZJ, Tang B, Chen J, Gao Z. Regioselective Cycloaddition and Substitution Reaction of Tertiary Propargylic Alcohols and Heteroareneboronic Acids via Acid Catalysis. Org Lett 2022; 24:4507-4512. [PMID: 35708270 DOI: 10.1021/acs.orglett.2c01403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report an acid-catalyzed formal cycloaddition and dehydrative substitution reaction of tertiary propargylic alcohols and heteroareneboronic acids. The properties of the substituents on the alkynyl moiety determines the regioselectivity of the reaction, which could selectively construct fused heterocycles, tetrasubstituted allenes, or 1,3-dienes. This reaction proceeds efficiently with a wide array of substrate scope in up to 89% yield. A significant advantage of this protocol is the transition-metal-free and mild conditions needed.
Collapse
Affiliation(s)
- Jian-Fei Bai
- School of Biological and Chemical Engineering, NingboTech University, 315100 Ningbo, P. R. China
| | - Jianbo Tang
- School of Biological and Chemical Engineering, NingboTech University, 315100 Ningbo, P. R. China
| | - Xiaolong Gao
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, 730000 Lanzhou, P. R. China
| | - Zhi-Jiang Jiang
- School of Biological and Chemical Engineering, NingboTech University, 315100 Ningbo, P. R. China
| | - Bencan Tang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, 315100 Ningbo, PR China
| | - Jia Chen
- School of Biological and Chemical Engineering, NingboTech University, 315100 Ningbo, P. R. China
| | - Zhanghua Gao
- School of Biological and Chemical Engineering, NingboTech University, 315100 Ningbo, P. R. China
| |
Collapse
|
5
|
Rouh H, Tang Y, Zhang S, Ali AIM, Surowiec K, Unruh D, Li G. Asymmetric [4 + 2] cycloaddition synthesis of 4 H-chromene derivatives facilitated by group-assisted-purification (GAP) chemistry. RSC Adv 2021; 11:39790-39796. [PMID: 35494146 PMCID: PMC9044656 DOI: 10.1039/d1ra08323f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
In this work, we present a strategy for the preparation of functionalized 4H-chromene derivatives via a Cs2CO3-catalyzed [4 + 2] cycloaddition of enantiopure chiral salicyl N-phosphonyl imines with allenoates. Fifteen examples were achieved in excellent yields and diastereoselectivity. The products were purified simply by washing the crude mixture with hexanes following the Group-Assisted Purification (GAP) chemistry/technology to bypass traditional separation methods. The absolute configuration was unambiguously determined by X-ray structure analysis. A new asymmetric method for the synthesis of highly functionalized 4H-chromenes was developed via Group-Assisted Purification (GAP) chemistry and shown in good to high yield and excellent diastereoselectivity.![]()
Collapse
Affiliation(s)
- Hossein Rouh
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock Texas 79409-1061 USA
| | - Yao Tang
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock Texas 79409-1061 USA
| | - Sai Zhang
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock Texas 79409-1061 USA
| | - Ahmed I M Ali
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock Texas 79409-1061 USA
| | - Kazimierz Surowiec
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock Texas 79409-1061 USA
| | - Daniel Unruh
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock Texas 79409-1061 USA
| | - Guigen Li
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock Texas 79409-1061 USA
| |
Collapse
|
6
|
Corpas J, Mauleón P, Arrayás RG, Carretero JC. Transition-Metal-Catalyzed Functionalization of Alkynes with Organoboron Reagents: New Trends, Mechanistic Insights, and Applications. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01421] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Javier Corpas
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| | - Pablo Mauleón
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| | - Ramón Gómez Arrayás
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| | - Juan C. Carretero
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
7
|
Fei Y, Hu J, Wang Z, Cui L, Jia X, Li C, Li J. Exploring the Reactivity of Propargylic Ester: Acyloxy and Acyl Migratory Rearrangement Relay Enabled by Formal Double Isocyanide Insertion. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Youwen Fei
- Department of Chemistry College of Sciences & Institute for Sustainable Energy Shanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Jie Hu
- Department of Chemistry College of Sciences & Institute for Sustainable Energy Shanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Zhishuang Wang
- Department of Chemistry College of Sciences & Institute for Sustainable Energy Shanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Lei Cui
- Department of Chemistry College of Sciences & Institute for Sustainable Energy Shanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Xueshun Jia
- Department of Chemistry College of Sciences & Institute for Sustainable Energy Shanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Chunju Li
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry Ministry of Education Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| | - Jian Li
- Department of Chemistry College of Sciences & Institute for Sustainable Energy Shanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 People's Republic of China
| |
Collapse
|
8
|
Ozcelik A, Pereira-Cameselle R, Alonso-Gómez JL. From Allenes to Spirobifluorenes: On the Way to Device-compatible Chiroptical Systems. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999201013164534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The last decade has seen a huge growth in the construction of chiral systems to
expand the scope of chiroptical applications. Dependence of chiroptical response on molecular
conformation typically leads to low chiroptical intensities of chiral systems that feature
several conformations in solution. In this respect, allenes were employed for the preparation
of open and cyclic oligomers as well as molecular cages, presenting remarkable chiroptical
responses in solution. Their molecular chirality was also transferred to metal surfaces, yet
photoisomerization of allenes limited their further exploration. In search of a more robust
chiral axis, theoretical and experimental studies confirmed that spirobifluorenes could give
rise to stable systems with tailored optical and chiroptical properties. Additionally, incorporating
a conformational lock into spirobifluorene cyclic architectures served as an efficient
strategy towards the generation of distinct helical molecular orbitals. This review article outlines our results on developing
device-compatible chiroptical systems through axially chiral allenes and spirobifluorenes. The contribution
from other research groups is presented briefly.
Collapse
Affiliation(s)
- Ani Ozcelik
- Department of Organic Chemistry, Faculty of Chemistry, University of Vigo, Vigo, Spain
| | | | | |
Collapse
|
9
|
Lozovskiy SV. Synthesis of heterocycles from allenes containing electron-withdrawing substituents under the conditions of electrophilic activation: recent advances. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02741-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Guo K, Kleij AW. Cu-Catalyzed Synthesis of Tetrasubstituted 2,3-Allenols through Decarboxylative Silylation of Alkyne-Substituted Cyclic Carbonates. Org Lett 2020; 22:3942-3945. [PMID: 32338521 DOI: 10.1021/acs.orglett.0c01222] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An efficient and mild Cu-catalyzed protocol has been developed for the decarboxylative silylation of alkyne-functionalized cyclic carbonate substrates affording 2,3-allenols featuring four different substituents. This practical methodology gives access to a wide scope of tetrasubstituted functionalized allenes in excellent yields.
Collapse
Affiliation(s)
- Kun Guo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007Tarragona, Spain
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007Tarragona, Spain.,Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
11
|
Qin A, Qian H, Chen Q, Ma S. Palladium‐Catalyzed Coupling of Propargylic Alcohols with Boronic Acids under Ambient Conditions. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.201900442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Anni Qin
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu Shanghai 200433 China
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu Shanghai 200433 China
| | - Qin Chen
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu Shanghai 200433 China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu Shanghai 200433 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
12
|
Zhou ZZ, Jiao RQ, Yang K, Chen XM, Liang YM. Photoredox/palladium co-catalyzed propargylic benzylation with internal propargylic carbonates. Chem Commun (Camb) 2020; 56:12957-12960. [DOI: 10.1039/d0cc04986g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The developed photo/palladium dual catalytic system provided a novel route to internal propargylic benzylation products. A radical coupling mechanism between the propargylic radical and benzyl radical was proposed.
Collapse
Affiliation(s)
- Zhao-Zhao Zhou
- School of Nuclear Science and Technology
- Lanzhou University
- Lanzhou
- P. R. China
- State Key Laboratory of Applied Organic Chemistry
| | - Rui-Qiang Jiao
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou
- P. R. China
| | - Ke Yang
- Technology Center of China Tabacco Guizhou Industrial Co. Ltd
- Guiyang
- P. R. China
| | - Xi-Meng Chen
- School of Nuclear Science and Technology
- Lanzhou University
- Lanzhou
- P. R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou
- P. R. China
| |
Collapse
|
13
|
Qin A, Zhu G, Chen Q, Qian H, Ma S. Palladium‐Catalyzed Desulfitative Cross‐Coupling Reaction of Sodium Sulfinates with Propargylic Carbonates. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Anni Qin
- Research Center for Molecular Recognition and Synthesis, Department of ChemistryFudan University 220 Handan Lu Shanghai 200433 People's Republic of China
| | - Guirong Zhu
- Research Center for Molecular Recognition and Synthesis, Department of ChemistryFudan University 220 Handan Lu Shanghai 200433 People's Republic of China
| | - Qin Chen
- Research Center for Molecular Recognition and Synthesis, Department of ChemistryFudan University 220 Handan Lu Shanghai 200433 People's Republic of China
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis, Department of ChemistryFudan University 220 Handan Lu Shanghai 200433 People's Republic of China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis, Department of ChemistryFudan University 220 Handan Lu Shanghai 200433 People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 People's Republic of China
| |
Collapse
|