1
|
Li H, Wang X, Chang M, Wu M, Yuan X, Hui X, Wei H, Xi J, Xie W. Construction of contiguous quaternary carbon centers enabled by dearomatization of phenols with 3-bromooxindoles. Org Biomol Chem 2024; 22:8413-8417. [PMID: 39352695 DOI: 10.1039/d4ob01163e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
A transition metal-free and oxidation-free dearomatization of phenols through conjugate addition to in situ generated indol-2-one from 3-bromooxindole is detailed in this report. This methodology offers an effective approach for the synthesis of a range of 3-substituted oxindoles containing contiguous quaternary carbon centers (CQCCs) with yields of up to 99%. The reaction is characterized by mild conditions, exceptional efficiency, environmental compatibility, favorable functional group tolerance, and scalability to large-scale production.
Collapse
Affiliation(s)
- Hui Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Xi Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Minhang Chang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Mengbo Wu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Xinyu Yuan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Xiangyu Hui
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Hongbo Wei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Juyun Xi
- Department of General Surgery, Nanping People's Hospital, Nanping, 35300, China.
| | - Weiqing Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, 712100, Shaanxi, China
| |
Collapse
|
2
|
Nishikata T. α-Halocarbonyls as a Valuable Functionalized Tertiary Alkyl Source. ChemistryOpen 2024; 13:e202400108. [PMID: 38989712 DOI: 10.1002/open.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Indexed: 07/12/2024] Open
Abstract
This review introduces the synthetic organic chemical value of α-bromocarbonyl compounds with tertiary carbons. This α-bromocarbonyl compound with a tertiary carbon has been used primarily only as a radical initiator in atom transfer radical polymerization (ATRP) reactions. However, with the recent development of photo-radical reactions (around 2010), research on the use of α-bromocarbonyl compounds as tertiary alkyl radical precursors became popular (around 2012). As more examples were reported, α-bromocarbonyl compounds were studied not only as radicals but also for their applications in organometallic and ionic reactions. That is, α-bromocarbonyl compounds act as nucleophiles as well as electrophiles. The carbonyl group of α-bromocarbonyl compounds is also attractive because it allows the skeleton to be converted after the reaction, and it is being applied to total synthesis. In our survey until 2022, α-bromocarbonyl compounds can be used to perform a full range of reactions necessary for organic synthesis, including multi-component reactions, cross-coupling, substitution, cyclization, rearrangement, stereospecific reactions, asymmetric reactions. α-Bromocarbonyl compounds have created a new trend in tertiary alkylation, which until then had limited reaction patterns in organic synthesis. This review focuses on how α-bromocarbonyl compounds can be used in synthetic organic chemistry.
Collapse
Affiliation(s)
- Takashi Nishikata
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| |
Collapse
|
3
|
Zheng T, Li Z, Luo Y, Zhang J, Xu J. A direct and efficient 3-halooxidation of indoles using DMSO as oxygen source. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
4
|
Zhao D, Pan Y, Guo S, Chen X, Hou H, Han Y, Yan C, Shi Y, Zhu S. Copper-Catalyzed Oxidative Dearomatized Oxyalkylation of Indoles with Alcohols: Synthesis of 3-Alkoxy-2-Oxindoles. J Org Chem 2022; 87:16867-16872. [DOI: 10.1021/acs.joc.2c02073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dengyang Zhao
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Pan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Shengkun Guo
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China
| | - Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Shaikh MA, Samal PP, Ubale AS, Krishnamurty S, Gnanaprakasam B. Lewis Acid-Catalyzed Chemodivergent and Regiospecific Reaction of Phenols with Quaternary Peroxyoxindoles. J Org Chem 2022; 87:14155-14167. [PMID: 36269888 DOI: 10.1021/acs.joc.2c01701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The indium-catalyzed regiospecific coupling of substituted phenol derivatives and quaternary peroxyoxindoles for the synthesis of C2 or C4 benzoxazin-3-one-substituted phenols via skeletal rearrangement is described. This reaction is demonstrated with 17 examples with good yields and diverse aryl substituents. In contrast to the indium-catalyzed reaction, the Cu(OTf)2-catalyzed reaction of the phenol with quaternary peroxyoxindoles afforded C2 or C4 2-oxindole-substituted phenol derivatives. This diverse catalytic reaction generated various biologically important phenol-substituted 2-oxindole derivatives directly without any skeleton rearrangement and was demonstrated with 19 examples in high yield. The regiospecificity and the reaction pathways were explained with the support of density functional theory (DFT).
Collapse
Affiliation(s)
- Moseen A Shaikh
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Pragnya Paramita Samal
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Akash S Ubale
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Sailaja Krishnamurty
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Boopathy Gnanaprakasam
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| |
Collapse
|
6
|
Khan J, Yadav N, Tyagi A, Hazra CK. Silyl Cation-Initiated, Brønsted Acid-Catalyzed Strategy toward Unsymmetrical 3,3-Disubstituted 2-Oxindoles and Azonazine Cores. J Org Chem 2022; 87:11097-11111. [PMID: 35930369 DOI: 10.1021/acs.joc.2c01351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Herein, a mild, metal-free, robust approach for synthesizing valuable and sterically demanding unsymmetrical 3,3-disubstituted 2-oxindoles via reductive cyclization of α-ketoamides is reported. This operationally simple protocol is initiated by a silyl cation and further catalyzed by a Brønsted acid. We have utilized a wide range of arenes, amines, and thiols as coupling partners with various α-ketoamides. The products were afforded in excellent regioselectivity and good functional group tolerance. This procedure provides easy access to the scaffolds of azonazine and its derivatives with an excellent syn-diastereoselectivity bearing all-carbon quaternary stereocenters.
Collapse
Affiliation(s)
- Jabir Khan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Naveen Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Aparna Tyagi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Chinmoy Kumar Hazra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
7
|
Hu F, Wang L, Wang P, Ding Z, Chen Y, Xu L, Liu XL, Li SS. Switchable construction of oxa-heterocycles with diverse ring sizes via chemoselective cyclization controlled by dibrominated compounds. Org Chem Front 2022. [DOI: 10.1039/d2qo01273a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Switchable construction of oxa-heterocycles with diverse ring sizes has been developed by performing dibrominated-compound-controlled chemoselective cyclization and subsequent derivatization.
Collapse
Affiliation(s)
- Fangzhi Hu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Liang Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Peng Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhanshuai Ding
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuzhuo Chen
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Lubin Xu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiong-Li Liu
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang 550025, P. R. China
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
8
|
Pastor M, Vayer M, Weinstabl H, Maulide N. Electrochemical Umpolung C-H Functionalization of Oxindoles. J Org Chem 2021; 87:606-612. [PMID: 34962127 PMCID: PMC8749966 DOI: 10.1021/acs.joc.1c02616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
Herein, we present
a general electrochemical method to access unsymmetrical
3,3-disubstituted oxindoles by direct C–H functionalization
where the oxindole fragment behaves as an electrophile. This Umpolung
approach does not rely on stoichiometric oxidants and proceeds under
mild, environmentally benign conditions. Importantly, it enables the
functionalization of these scaffolds through C–O, and by extension
to C–C or even C–N bond formation.
Collapse
Affiliation(s)
- Miryam Pastor
- Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Marie Vayer
- Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Harald Weinstabl
- Boehringer-Ingelheim RCV, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Nuno Maulide
- Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| |
Collapse
|
9
|
Mizuta S, Kitamura K, Morii Y, Ishihara J, Yamaguchi T, Ishikawa T. Trifluoromethylthiolation of Hindered α-Bromoamides with Nucleophilic Trifluoromethylthiolating Reagents. J Org Chem 2021; 86:18017-18029. [PMID: 34855413 DOI: 10.1021/acs.joc.1c02316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
General methods have not been previously developed for the synthesis of sterically hindered α-SCF3-substituted carbonyl compounds using nucleophilic trifluoromethylthiolating reagents. Thus, we herein report sp3C-SCF3 bond formation in hindered α-bromoamides containing 3-bromo-oxindoles and linear α-bromoamides using CuSCF3 or AgSCF3 under mild conditions to access sterically hindered α-SCF3-substituted amides. This transformation is applicable to not only 3-SCF3-substituted oxindoles but also primary and secondary amides and reveals a broad functional group tolerance. This method will benefit the fields of medicinal and agricultural chemistry.
Collapse
Affiliation(s)
- Satoshi Mizuta
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan
| | - Kanami Kitamura
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan
| | - Yuki Morii
- Department of Pharmaceutical Organic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan
| | - Jun Ishihara
- Department of Pharmaceutical Organic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan
| | - Tomoko Yamaguchi
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan
| | - Takeshi Ishikawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
10
|
Samikannu R, Sethuraman S, Akula N, Radhakrishnan V, Kamisetti S, Banu S, Vetrichelvan M, Gupta A, Li J, Rampulla R, Mathur A. Solvent-specific, DAST-mediated intramolecular Friedel-Crafts reaction: access to dibenzoxepine-fused spirooxindoles. Org Biomol Chem 2021; 19:1760-1768. [PMID: 33538747 DOI: 10.1039/d0ob02461a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A facile, DAST-mediated intramolecular cyclization of 3-hydroxy-3-(2-((3-methoxybenzyl)oxy)phenyl)indolin-2-one derivatives for the synthesis of spirooxindoles fused with dibenzoxepine moieties is described. The success of this reaction is highly dependent on the choice of solvent (promoted by DCM and 1,2-DCE) and the electronic nature of the pendant aromatic ring, which is favored by the presence of electron-donating substituents. The reaction is believed to proceed through an intramolecular Friedel-Crafts-type reaction. Various dibenzoxepine-fused spirooxindoles were successfully synthesized in up to 98% yield. This methodology provides libraries of structurally diverse and medicinally important small molecules that could aid in the search for new bioactive molecules.
Collapse
Affiliation(s)
- Ramesh Samikannu
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Jigani Link Road, Bommasandra IV, Bangalore 560100, India.
| | - Sankaranarayanan Sethuraman
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Jigani Link Road, Bommasandra IV, Bangalore 560100, India.
| | - Nagaraja Akula
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Jigani Link Road, Bommasandra IV, Bangalore 560100, India.
| | - Vignesh Radhakrishnan
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Jigani Link Road, Bommasandra IV, Bangalore 560100, India.
| | - Srinivasarao Kamisetti
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Jigani Link Road, Bommasandra IV, Bangalore 560100, India.
| | - Shabana Banu
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Jigani Link Road, Bommasandra IV, Bangalore 560100, India.
| | - Muthalagu Vetrichelvan
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Jigani Link Road, Bommasandra IV, Bangalore 560100, India.
| | - Anuradha Gupta
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Jigani Link Road, Bommasandra IV, Bangalore 560100, India.
| | - Jianqing Li
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, 100 Binney St., Cambridge, MA 02142, USA
| | - Richard Rampulla
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 5400, Princeton, New Jersey 08543-4000, USA
| | - Arvind Mathur
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Jigani Link Road, Bommasandra IV, Bangalore 560100, India. and Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 5400, Princeton, New Jersey 08543-4000, USA
| |
Collapse
|
11
|
Hunjan MK, Panday S, Gupta A, Bhaumik J, Das P, Laha JK. Recent Advances in Functionalization of Pyrroles and their Translational Potential. CHEM REC 2021; 21:715-780. [PMID: 33650751 DOI: 10.1002/tcr.202100010] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/25/2022]
Abstract
Among the known aromatic nitrogen heterocycles, pyrrole represents a privileged aromatic heterocycle ranging its occurrence in the key component of "pigments of life" to biologically active natural products to active pharmaceuticals. Pyrrole being an electron-rich heteroaromatic compound, its predominant functionalization is legendary to aromatic electrophilic substitution reactions. Although a few excellent reviews on the functionalization of pyrroles including the reports by Baltazzi in 1963, Casiraghi and Rassu in 1995, and Banwell in 2006 are available, they are fragmentary and over fifteen years old, and do not cover the modern aspects of catalysis. A review covering a comprehensive package of direct functionalization on pyrroles via catalytic and non-catalytic methods including their translational potential is described. Subsequent to statutory yet concise introduction, the classical functionalization on pyrroles using Lewis acids largely following an ionic mechanism is discussed. The subsequent discussion follows the various metal-catalyzed C-H functionalization on pyrroles, which are otherwise difficult to implement by Lewis acids. A major emphasize is given on the radical based pyrrole functionalization under metal-free oxidative conditions, which is otherwise poorly highlighted in the literature. Towards the end, the current development of pyrrole functionalization under photocatalyzed and electrochemical conditions is appended. Only a selected examples of substrates and important mechanisms are discussed for different methods highlighting their scopes and limitations. The aromatic nucleophillic substitution on pyrroles (being an electron-rich heterocycle) happened to be the subject of recent investigations, which has also been covered accentuating their underlying conceptual development. Despite great achievements over the past several years in these areas, many challenges and problems are yet to be solved, which are all discussed in summary and outlook.
Collapse
Affiliation(s)
- Mandeep Kaur Hunjan
- Department of Pharmaceutial Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Mohali, 160062, India
| | - Surabhi Panday
- Department of Pharmaceutial Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Mohali, 160062, India
| | - Anjali Gupta
- Department of Pharmaceutial Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Mohali, 160062, India
| | - Jayeeta Bhaumik
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S., Nagar, 140306, Punjab, India
| | - Parthasarathi Das
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad, 826004, India
| | - Joydev K Laha
- Department of Pharmaceutial Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Mohali, 160062, India
| |
Collapse
|
12
|
Yuan WC, Zuo J, Yuan SP, Zhao JQ, Wang ZH, You Y. Ring expansion and ring opening of 3-halooxindoles with N-alkoxycarbonyl- O-tosylhydroxylamines for divergent access to 4-aminoquinolin-2-ones and N-Cbz- N’-arylureas. Org Chem Front 2021. [DOI: 10.1039/d0qo01335h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The reaction of N-alkoxycarbonyl-O-tosylhydroxylamines with indol-2-ones in situ generated from 3-halooxindoles has been developed for divergently accessing 4-aminoquinolin-2-ones and N-Cbz-N’-arylureas in good to excellent yields.
Collapse
Affiliation(s)
- Wei-Cheng Yuan
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| | - Jian Zuo
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Shu-Pei Yuan
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Jian-Qiang Zhao
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| | - Zhen-Hua Wang
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| | - Yong You
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| |
Collapse
|
13
|
Devi M, Jadhav AP, Singh RP. KOH-mediated stereoselective alkylation of 3-bromooxindoles for the synthesis of 3,3′-disubstituted oxindoles with two contiguous all carbon quaternary centres. NEW J CHEM 2021. [DOI: 10.1039/d0nj06283a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stereoselective synthesis of 3,3′-disubstituted oxindoles having all-carbon quaternary stereocenters has been achieved using KOH as a base with an excellent diastereomeric ratio (98 : 2).
Collapse
Affiliation(s)
- Manju Devi
- Department of Chemistry
- Indian Institute of Technology
- Delhi
- Hauz Khas
- India
| | - Amol P. Jadhav
- Department of Chemistry
- Indian Institute of Technology
- Delhi
- Hauz Khas
- India
| | - Ravi P. Singh
- Department of Chemistry
- Indian Institute of Technology
- Delhi
- Hauz Khas
- India
| |
Collapse
|
14
|
Jiang X, Yang L, Yang W, Zhu Y, Fang L, Yu C. Controllable synthesis of 3-chloro- and 3,3-dichloro-2-oxindoles via hypervalent iodine-mediated chlorooxidation. Org Biomol Chem 2019; 17:6920-6924. [PMID: 31282524 DOI: 10.1039/c9ob01173k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An efficient and controllable protocol for the synthesis of 3-chloro- and 3,3-dichloro-2-oxindoles has been developed via hypervalent iodine-promoted chlorooxidation. By using two equivalents of 1-chloro-1,2-benziodoxol-3-(1H)-one, a wide range of indoles were transformed into 3-chloro-2-oxindoles in DMF/CF3CO2H/H2O at room temperature with good yields. As far as we know, this is the first report on the selective C-2 oxidation and C-3 monochlorination of simple indoles. In addition, three equivalents of the same hypervalent iodine afforded 3,3-dichloro-2-oxindoles in up to 99% yields under optimized conditions (dioxane/H2O, 80 °C). The method features mild reaction conditions, the widespread availability of the substrates, and good functional group tolerance.
Collapse
Affiliation(s)
- Xinpeng Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China.
| | - Liechao Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China.
| | - Wenlong Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China.
| | - Yu Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China.
| | - Liyun Fang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China.
| | - Chuanming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China.
| |
Collapse
|
15
|
Liu XL, Zhou G, Gong Y, Yao Z, Zuo X, Zhang WH, Zhou Y. Stereocontrolled Synthesis of Bispirooxindole-Based Hexahydroxanthones with Five Contiguous Stereocenters. Org Lett 2019; 21:2528-2531. [DOI: 10.1021/acs.orglett.9b00139] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xiong-Li Liu
- College of Pharmaceutical Sciences, Guizhou University of Chinese Medicine, Guiyang, Guizhou 550025, P.R. China
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Gen Zhou
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Yi Gong
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Zhen Yao
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Xiong Zuo
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Wen-Hui Zhang
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Ying Zhou
- College of Pharmaceutical Sciences, Guizhou University of Chinese Medicine, Guiyang, Guizhou 550025, P.R. China
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| |
Collapse
|
16
|
Liu XL, Zuo X, Wang JX, Chang SQ, Wei QD, Zhou Y. A bifunctional pyrazolone–chromone synthon directed organocatalytic double Michael cascade reaction: forging five stereocenters in structurally diverse hexahydroxanthones. Org Chem Front 2019. [DOI: 10.1039/c9qo00265k] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The merging of two or more known natural product-based scaffolds is a powerful and routine strategy to develop bioactive small molecules.
Collapse
Affiliation(s)
- Xiong-Li Liu
- College of Pharmaceutical Sciences
- Guizhou University of Chinese Medicine
- Guiyang
- P. R. China
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine
| | - Xiong Zuo
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine
- Guizhou University
- Guiyang
- P. R. China
| | - Jun-Xin Wang
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine
- Guizhou University
- Guiyang
- P. R. China
| | - Shun-qin Chang
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine
- Guizhou University
- Guiyang
- P. R. China
| | - Qi-Di Wei
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine
- Guizhou University
- Guiyang
- P. R. China
| | - Ying Zhou
- College of Pharmaceutical Sciences
- Guizhou University of Chinese Medicine
- Guiyang
- P. R. China
| |
Collapse
|