1
|
Abuhasheesh YH, Hegab HM, Wadi VS, Al Marzooqi F, Banat F, Aljundi IH, Hasan SW. Phase inverted hydrophobic polyethersulfone/iron oxide-oleylamine ultrafiltration membranes for efficient water-in-oil emulsion separation. CHEMOSPHERE 2023:139431. [PMID: 37422217 DOI: 10.1016/j.chemosphere.2023.139431] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/06/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Exploration and transportation of oil offshore can result in oil spills that cause a wide range of adverse environmental consequences and destroy aquatic life. Membrane technology outperformed the conventional procedures for oil emulsion separation due to its improved performance, reduced cost, removal capacity, and greater eco-friendly. In this study, a hydrophobic iron oxide-oleylamine (Fe-Ol) nanohybrid was synthesized and incorporated into polyethersulfone (PES) to prepare novel PES/Fe-Ol hydrophobic ultrafiltration (UF) mixed matrix membranes (MMMs). Several characterization techniques were performed to characterize the synthesized nanohybrid and fabricated membranes, including scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), contact angle, and zeta potential. The membranes' performance was assessed using a surfactant-stabilized (SS) water-in-hexane emulsion as a feed and a dead-end vacuum filtration setup. The incorporation of the nanohybrid enhanced the hydrophobicity, porosity, and thermal stability of the composite membranes. At 1.5 wt% Fe-Ol nanohybrid, the modified PES/Fe-Ol MMM membranes reported high water rejection efficiency of 97.4% and 1020.4 LMH filtrate flux. The re-usability and antifouling properties of the membrane were examined over five filtration cycles, demonstrating its great potential for use in water-in-oil separation.
Collapse
Affiliation(s)
- Yazan H Abuhasheesh
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Hanaa M Hegab
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Vijay S Wadi
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Faisal Al Marzooqi
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Isam H Aljundi
- Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia; Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Saudi Arabia
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Wang J, Shen J, Shi J, Li Y, You J, Bian F. Crystallization-templated high-performance PVDF separator used in lithium-ion batteries. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
3
|
Liu N, Yang Z, Sun Y, Shan L, Li H, Wang Z. Slippery Mechanism for Enhancing Separation and Anti-fouling of the Superhydrophobic Membrane in a Water-in-Oil Emulsion: Evaluating Water Adhesion of the Membrane Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8312-8323. [PMID: 35767278 DOI: 10.1021/acs.langmuir.2c00767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Water removal from water-in-oil emulsions with superhydrophobic microporous membranes is an important industrial process, where the interface property between the membrane and feed becomes critical. Here, superhydrophobic isotactic polypropylene (iPP) microporous membranes with the "lotus effect" and "rose-petal effect" were prepared via utilizing micromolding phase separation, where the former surface exhibited a water contact angle of 153° and a sliding angle of 3.2°, while the latter surface exhibited a water contact angle of 151° and adhesive characteristics. Surface topography and wettability analysis revealed that surface hydrophobicity and water adhesion could be improved by reducing the periodic distance and diameter and increasing the height of the micron-scale structure. When treating both water-in-oil emulsions and water-in-oil emulsions containing BSA pollutants, the iPP membrane with the "lotus effect" was superior to that with the "rose-petal effect" in terms of oil permeate flux, separation efficiency, anti-fouling ability, and recyclability (20 cycles). To explain this phenomenon, a "slippery" mechanism was introduced that correlated the sliding angle to the slippery surface of the iPP membrane with the "lotus effect" and its anti-water adhesion property. This work proposed a theoretical platform for investigating the effect of water adhesion on superhydrophobic membranes in terms of oil-water separation efficiency and anti-fouling ability, thereby providing a definite basis for preparing superhydrophobic membranes with efficient separation and fouling resistance capabilities.
Collapse
Affiliation(s)
- Ning Liu
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Zhensheng Yang
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yue Sun
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Linna Shan
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Zhiying Wang
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
4
|
Paul S, Bhoumick MC, Roy S, Mitra S. Carbon nanotube enhanced membrane filtration for trace level dewatering of hydrocarbons. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
5
|
Paul S, Bhoumick MC, Roy S, Mitra S. Carbon Nanotube Enhanced Filtration and Dewatering of Kerosene. MEMBRANES 2022; 12:621. [PMID: 35736328 PMCID: PMC9227186 DOI: 10.3390/membranes12060621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022]
Abstract
Current approaches to dewatering aviation fuel such as kerosene are adsorption by activated charcoal, gravity separation, etc. The objective of this work is to develop and demonstrate the filtration and dewatering of kerosene using a carbon nanotube immobilised membrane (CNIM). Highly hydrophobic membranes were prepared by immobilising carbon nanotube (CNTs) over polytetrafluoroethylene (PTFE) and polyvinylidene difluoride (PVDF) microfiltration membrane for the dewatering of ppm level water from kerosene. The effects of different CNT concentrations on membrane morphology, hydrophobicity, porosity, and permeability were characterised. After immobilising CNT into membranes, the contact angle increased by 9%, 16%, and 43% compared to unmodified 0.1 μm PTFE, 0.22 μm PTFE and 0.22 μm PVDF membranes, respectively. The CNIM showed remarkable separation efficiency for the fuel-water system. The micro/nano water droplets coalesced on the CNT surface to form larger diameters of water droplets detached from the membrane surface, leading to enhanced water rejection. In general, the water rejection increased with the amount of CNT immobilised while the effective surface porosity over pore length and flux decreased. PTFE base membrane showed better performance compared to the PVDF substrate. The CNIMs were fabricated with 0.1 and 0.22 μm PTFE at an optimised CNT loading of 3 and 6 wt.%, and the water rejection was 99.97% and 97.27%, respectively, while the kerosene fluxes were 43.22 kg/m2·h and 55.44 kg/m2·h respectively.
Collapse
Affiliation(s)
| | | | | | - Somenath Mitra
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA; (S.P.); (M.C.B.); (S.R.)
| |
Collapse
|
6
|
Cheng X, Liu W, Zhang C, Chen X, Duan S, Fu H. Synthesis and electrospinning of multiscale‐ordered
PLA
/
LDH
@
AgGB
composite nanofibrous membrane for antibacterial and oil–water separation. J Appl Polym Sci 2022. [DOI: 10.1002/app.52621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiao‐Qiong Cheng
- Guizhou Norm University School of Materials and Architectural Engineering Guiyang People's Republic of China
| | - Wei Liu
- Guizhou Institutes of Technology School of Materials and Energy Engineering Guiyang People's Republic of China
| | - Chun Zhang
- Guizhou Institutes of Technology School of Materials and Energy Engineering Guiyang People's Republic of China
| | - Xiao‐Cheng Chen
- Guizhou Institutes of Technology School of Materials and Energy Engineering Guiyang People's Republic of China
| | - Shu‐Qian Duan
- Guizhou Norm University School of Materials and Architectural Engineering Guiyang People's Republic of China
| | - Hai Fu
- Guizhou Norm University School of Materials and Architectural Engineering Guiyang People's Republic of China
| |
Collapse
|
7
|
Huang Z, Kuang J, Yuan W, Yu M, Wang X. Regulation mechanism of ultrasonication on surface hydrophobicity of scheelite. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Yan J, Xiao C, Huang Y, Zhang T. Study of crystal structure and properties of poly(vinylidene fluoride)/graphene composite fibers. POLYM INT 2021. [DOI: 10.1002/pi.6279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jingjing Yan
- School of Textile Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes Tiangong University Tianjin China
| | - Changfa Xiao
- School of Textile Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes Tiangong University Tianjin China
- Shanghai University of Engineering Science Shanghai China
| | - Yan Huang
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes Tiangong University Tianjin China
| | - Tai Zhang
- School of Textile Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes Tiangong University Tianjin China
| |
Collapse
|
9
|
The effect of unique structural flower-like TiO2 towards polysulfone mixed matrix membrane as efficient antifouling and antibacterial for humic acid removal. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02644-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Cheng XQ, Jiao Y, Sun Z, Yang X, Cheng Z, Bai Q, Zhang Y, Wang K, Shao L. Constructing Scalable Superhydrophobic Membranes for Ultrafast Water-Oil Separation. ACS NANO 2021; 15:3500-3508. [PMID: 33569948 DOI: 10.1021/acsnano.1c00158] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Superhydrophobic membranes are desirable for separation of water-in-oil emulsions, membrane distillation, and membrane condensation. However, the lack of large-scale manufacture methods of superhydrophobic membranes hampers their widespread applications. Here, a facile method of coaxial electrospinning is provided to manufacture superhydrophobic membranes for the ultrafast separation of water-in-oil emulsions. Under the high-voltage electric field, the polydimethylsiloxane (PDMS)-coated polyvinylidene fluoride (PVDF) nanofibers and PDMS microspheres with PVDF nanobulges were integrated together during the electrospinning process. Moreover, asymmetric composite membranes with selective layers are designed to reduce the resistance of the mass transfer. Consequently, the as-prepared asymmetric composite membrane exhibits an ultrafast permeance and excellent separation efficiency of about 99.6%, outperforming most of the state-of-the-art membranes reported previously. Most importantly, the membrane could be as large as 770 cm2, could be manufactured continuously, and could be easily enlarged further via tailoring the roller receptor, showing strong promise in the separation of water-in-oil emulsions.
Collapse
Affiliation(s)
- Xi Quan Cheng
- School of Marine Science and Technology, Sino-European Membrane Technology Research Institute, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Weihai 264209, P.R. China
| | - Yang Jiao
- School of Marine Science and Technology, Sino-European Membrane Technology Research Institute, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Weihai 264209, P.R. China
| | - Zekun Sun
- School of Marine Science and Technology, Sino-European Membrane Technology Research Institute, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Weihai 264209, P.R. China
| | - Xiaobin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemical Engineering and Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Zhongjun Cheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemical Engineering and Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Qing Bai
- School of Marine Science and Technology, Sino-European Membrane Technology Research Institute, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Weihai 264209, P.R. China
| | - Yingjie Zhang
- School of Marine Science and Technology, Sino-European Membrane Technology Research Institute, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Weihai 264209, P.R. China
| | - Kai Wang
- School of Marine Science and Technology, Sino-European Membrane Technology Research Institute, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Weihai 264209, P.R. China
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemical Engineering and Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150001, P.R. China
| |
Collapse
|
11
|
Fabrication of polycarbonate ultrafiltration mixed matrix membranes including modified halloysite nanotubes and graphene oxide nanosheets for olive oil/water emulsion separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117332] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Wang J, Ding M, Cheng X, Ye C, Li F, Li Y, You J. Hierarchically porous membranes with isolated-round-pores connected by narrow-nanopores: A novel solution for trade-off effect in separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Zhang T, Xiao C, Zhao J, Cheng J, Chen K, Huang Y. Graphene-Coated Poly(ethylene terephthalate) Nonwoven Hollow Tube for Continuous and Highly Effective Oil Collection from the Water Surface. ACS OMEGA 2019; 4:7237-7245. [PMID: 31459827 PMCID: PMC6648901 DOI: 10.1021/acsomega.9b00428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/27/2019] [Indexed: 05/16/2023]
Abstract
Graphene (GE) has attracted significant attention on account of its unique structure and superior performance, arousing a new research field for materials science. Herein, a novel GE-coated poly(ethylene terephthalate) nonwoven (PGNW) hollow tube (PGNW-T) was fabricated for continuous and highly effective oil collection from the water surface. The PGNW was prepared via a dip-spray coating method, which possessed superhydrophobicity-superoleophilicity and could absorb a variety of oils or organic solvents with the absorption capacity (Q) value of 18-34 times its own weight. Then, PGNW-T was obtained through winding the PGNW on the surface of a porous polypropylene hollow tube. As-prepared PGNW-T was competent for dynamic oil collection with high flux (18 799.94 L/m2 h), outstanding separation efficiency (97.14%), and excellent recyclability (>96% after 10 cycles) from the oil/water mixture. In particular, a miniature device based on as-prepared PGNW-T was developed for continuous thin oil film collection, which could dynamically "catch up" floated oils or organic solvents from the water surface. Finally, our strategy is extremely facile to scale up, showing its huge potential application in practical oil-spill remediation.
Collapse
Affiliation(s)
- Tai Zhang
- School
of Textile Science and Engineering and State Key Laboratory of Separation
Membranes and Membrane Processes, Tianjin
Polytechnic University, Tianjin 300387, China
| | - Changfa Xiao
- School
of Textile Science and Engineering and State Key Laboratory of Separation
Membranes and Membrane Processes, Tianjin
Polytechnic University, Tianjin 300387, China
| | - Jian Zhao
- School
of Textile Science and Engineering and State Key Laboratory of Separation
Membranes and Membrane Processes, Tianjin
Polytechnic University, Tianjin 300387, China
| | - Jinxue Cheng
- School
of Textile Science and Engineering and State Key Laboratory of Separation
Membranes and Membrane Processes, Tianjin
Polytechnic University, Tianjin 300387, China
| | - Kaikai Chen
- School
of Textile Science and Engineering and State Key Laboratory of Separation
Membranes and Membrane Processes, Tianjin
Polytechnic University, Tianjin 300387, China
| | - Yan Huang
- School
of Textile Science and Engineering and State Key Laboratory of Separation
Membranes and Membrane Processes, Tianjin
Polytechnic University, Tianjin 300387, China
| |
Collapse
|
14
|
Chen C, Weng D, Mahmood A, Chen S, Wang J. Separation Mechanism and Construction of Surfaces with Special Wettability for Oil/Water Separation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11006-11027. [PMID: 30811172 DOI: 10.1021/acsami.9b01293] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Oil leakage and the discharge of oil/water mixtures by domestic and industrial consumers have caused not only severe environmental pollution and a threat to all species in the ecosystem but also a huge waste of precious resources. Therefore, the separation of oil/water mixtures, especially stable emulsion, has become an urgent global issue. Recently, materials containing a special wettability feature for oil and water have drawn immense attention because of their potential applications for oil/water separation application. In this paper, we systematically summarize the fundamental theories, separation mechanism, design strategies, and recent developments in materials with special wettability for separating stratified and emulsified oil/water mixtures. The related wetting theories that unveil the physical underlying mechanism of the oil/water separation mechanism are proposed, and the practical design criteria for oil/water separation materials are provided. Guided by the fundamental design criteria, various porous materials with special wettability characteristics, including those which are superhydrophilic/underwater superoleophobic, superhydrophobic/superoleophilic, and superhydrophilic/in-air superoleophobic, are systemically analyzed. These superwetting materials are widely employed to separate oil/water mixtures: from stratified oil/water to emulsified ones. In addition, the materials that implement the demulsification of emulsified oil/water mixtures via the ingenious design of the multiscale surface morphology and construction of special wettability are also discussed. In each section, we introduce the design ideas, base materials, preparation methods, and representative works in detail. Finally, the conclusions and challenges for the oil/water separation research field are discussed in depth.
Collapse
Affiliation(s)
- Chaolang Chen
- Sate Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , P. R. China
| | - Ding Weng
- Sate Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , P. R. China
| | - Awais Mahmood
- Sate Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , P. R. China
| | - Shuai Chen
- Sate Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , P. R. China
| | - Jiadao Wang
- Sate Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , P. R. China
| |
Collapse
|
15
|
Xiong L, Guo W, Alameda BM, Sloan RK, Walker WD, Patton DL. Rational Design of Superhydrophilic/Superoleophobic Surfaces for Oil-Water Separation via Thiol-Acrylate Photopolymerization. ACS OMEGA 2018; 3:10278-10285. [PMID: 31459158 PMCID: PMC6645275 DOI: 10.1021/acsomega.8b01461] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/20/2018] [Indexed: 05/25/2023]
Abstract
We report a simple, rapid, and scalable strategy to fabricate surfaces exhibiting in-air superoleophobic/superhydrophilic wetting via sequential spray deposition and photopolymerization of nanoparticle-laden thiol-acrylate resins comprising both hydrophilic and oleophobic chemical constituents. The combination of spray deposition with nanoparticles provides hierarchical surface morphologies with both micro- and nanoscale roughness. Mapping the wetting behavior as a function of resin composition using high- and low-surface-tension liquid probes enabled facile identification of coatings that exhibit a range of wetting behavior, including superhydrophilic/superoleophilic, superhydrophobic/superoleophobic, and in-air superhydrophilic/superoleophobic wetting. In-air superhydrophilic/superoleophobic wetting was realized by a dynamic rearrangement of the interface to expose a greater fraction of hydrophilic moieties in response to contact with water. We show that these in-air superoleophobic/superhydrophilic coatings deposited onto porous supports enable separation of model oil-water emulsions with separation efficiencies up to 99.9% with 699 L·m-2 h-1 permeate flux when the superhydrophilic/superoleophobic coatings are paired with 0.45 μm nylon membrane supports.
Collapse
Affiliation(s)
- Li Xiong
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Wei Guo
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Benjamin M. Alameda
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Reese K. Sloan
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - William D. Walker
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Derek L. Patton
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| |
Collapse
|