1
|
Guo W, Chen Y, Wang J, Cui L, Yan Y. Enhanced electroactive bacteria enrichment and facilitated extracellular electron transfer in microbial fuel cells via polydopamine coated graphene aerogel anode. Bioelectrochemistry 2024; 160:108769. [PMID: 38955054 DOI: 10.1016/j.bioelechem.2024.108769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
The structure and surface physicochemical properties of anode play a crucial role in microbial fuel cells (MFCs). To enhance the enrichment of exoelectrogen and facilitate extracellular electron transfer (EET), a three-dimensional macroporous graphene aerogel with polydopamine coating was successfully introduced to modify carbon brush (PGA/CB). The three-dimensional graphene aerogel (GA) with micrometer pores improved the space utilization efficiency of microorganisms. Polydopamine (PDA) coating enhanced the physicochemical properties of the electrode surface by introducing abundant functional groups and nitrogen-containing active sites. MFCs equipped with PGA/CB anodes (PGA/CB-MFCs) demonstrated superior power generation compared to GA/CB-MFCs and CB-MFCs (MFCs with GA/CB and CB anodes respectively), including a 23.0 % and 30.1 % reduction in start-up time, and an increase in maximum power density by 2.43 and 1.24 times respectively. The higher bioelectrochemical activity exhibited by the biofilm of PGA/CB anode and the promoted riboflavin secretion by PGA modification imply the enhanced EET efficiency. 16S rRNA high-throughput sequence analysis of the biofilms revealed successful enrichment of Geobacter on PGA/CB anodes. These findings not only validate the positive impact of the synergistic effects between GA and PDA in promoting EET and improving MFC performance but also provide valuable insights for electrode design in other bioelectrochemical systems.
Collapse
Affiliation(s)
- Wei Guo
- Xinxiang Engineering Technology Research Center of Functional Medical Nanomaterials, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China.
| | - Yingying Chen
- Xinxiang Engineering Technology Research Center of Functional Medical Nanomaterials, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Jiayi Wang
- Xinxiang Engineering Technology Research Center of Functional Medical Nanomaterials, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Liang Cui
- Audit affairs Department, Xinxiang Medical University, Xinxiang 453003, People's Republic of China
| | - Yunhui Yan
- Xinxiang Engineering Technology Research Center of Functional Medical Nanomaterials, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China.
| |
Collapse
|
2
|
Krishnamoorthy V, Sabhapathy P, Raghunath P, Huang CY, Sabbah A, Hussien MK, Syum Z, Muthusamy S, Lin MC, Wu HL, Chen RS, Chen KH, Chen LC. Synergistic Electronic Interaction of Nitrogen Coordinated Fe-Sn Double-Atom Sites: An Efficient Electrocatalyst for Oxygen Reduction Reaction. SMALL METHODS 2024; 8:e2301674. [PMID: 38284329 DOI: 10.1002/smtd.202301674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Double-atom site catalysts (DASs) have emerged as a recent trend in the oxygen reduction reaction (ORR), thereby modifying the intermediate adsorption energies and increasing the activity. However, the lack of an efficient dual atom site to improve activity and durability has limited these catalysts from widespread application. Herein, the nitrogen-coordinated iron and tin-based DASs (Fe-Sn-N/C) catalyst are synthesized for ORR. This catalyst has a high activity with ORR half-wave potentials (E1/2) of 0.92 V in alkaline, which is higher than those of the state-of-the-art Pt/C (E1/2 = 0.83 V), Fe-N/C (E1/2 = 0.83 V), and Sn-N/C (E1/2 = 0.77 V). Scanning electron transmission microscopy analysis confirmed the atomically distributed Fe and Sn sites on the N-doped carbon network. X-ray absorption spectroscopy analysis revealed the charge transfer between Fe and Sn. Both experimental and theoretical results indicate that the Sn with Fe-NC (Fe-Sn-N/C) induces charge redistribution, weakening the binding strength of oxygenated intermediates and leading to improved ORR activity. This study provides the synergistic effects of DASs catalysts and addresses the impacts of P-block elements on d-block transition metals in ORR.
Collapse
Affiliation(s)
- Vimal Krishnamoorthy
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Palani Sabhapathy
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
| | - Puttikam Raghunath
- Department of Applied Chemistry, National Yang-Ming Chiao-Tung University, Hsinchu, 30010, Taiwan
| | - Chih-Yang Huang
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Amr Sabbah
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | | | - Zeru Syum
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | | | - Ming-Chang Lin
- Department of Applied Chemistry, National Yang-Ming Chiao-Tung University, Hsinchu, 30010, Taiwan
| | - Heng-Liang Wu
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
| | - Ruei-San Chen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Kuei-Hsien Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Li-Chyong Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
3
|
Farcaş AA, Bende A. Theoretical insights into dopamine photochemistry adsorbed on graphene-type nanostructures. Phys Chem Chem Phys 2024; 26:14937-14947. [PMID: 38738904 DOI: 10.1039/d4cp00432a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The equilibrium geometry structures and light absorption properties of the dopamine (DA) and dopamine-o-quinone (DAQ) adsorbed on the graphene surface have been investigated using the ground state and linear-response time-dependent density functional theories. Two types of graphene systems were considered, a rectangular form of hexagonal lattice with optimized C-C bond length as the model system for graphene nanoparticles (GrNP) and a similar system but with fixed C-C bond length (1.42 Å) as the model system for graphene 2D sheet (GrS). The analysis of the vertical excitations showed that three types of electronic transitions are possible, namely, localized on graphene, localized on the DA or DAQ, and charge transfer (CT). In the case of the graphene-DA complex, the charge transfer excitations were characterized by the molecule-to-surface (MSCT) character, whereas the graphene-DAQ was characterized by the reverse, i.e. surface-to-molecule (SMCT). The difference between the two cases is given by the presence of an energetically low-lying unoccupied orbital (LUMO+1) that allows charge transfer from the surface to the molecule in the case of DAQ. However, it was also shown that the fingerprints of excited electronic states associated with the adsorbed molecules cannot be seen in the spectrum, as they are mostly suppressed by the characteristic spectral shape of graphene.
Collapse
Affiliation(s)
- Alex-Adrian Farcaş
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, No. 67-103, Ro-400293 Cluj-Napoca, Romania.
| | - Attila Bende
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, No. 67-103, Ro-400293 Cluj-Napoca, Romania.
| |
Collapse
|
4
|
Li Y, Qin Y, Zhao J, Ma M, Zhang M, Li P, Lu S, Bu H, Xi K, Su Y, Ding S. Boosting the Ion Mobility in Solid Polymer Electrolytes Using Hollow Polymer Nanospheres as an Additive. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18360-18372. [PMID: 35413174 DOI: 10.1021/acsami.2c00244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Solid polymer electrolytes (SPEs) possess improved thermal and mechanical stability as safe energy storage devices. However, their low ion mobilities and poor electrochemical stabilities still hinder the wide industrial application of SPEs. Herein, we introduce an SPE design that provides an enormous number of electrochemically stable pathways and space for lithium-ion transport, blending polymer (polydopamine) hollow nanospheres with an inactive inorganic template into a poly(ethylene oxide) (PEO) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) based SPE. Hollow silica acts as a template for polydopamine processing a large contact area with the polymer electrolyte, and the interface between the polymer electrolyte and hollow composite fillers provides amounts of ion transport channels. In addition, theoretical calculations reveal a strong adsorption between polydopamine and TFSI-, which suppresses the TFSI- motion and meanwhile facilitates the selective Li+ transport. The hollow polydopamine can serve as a versatile platform for anion trapping and has large compatible and stable depression for a well-defined ion transfer interface layer, forming a three-in-one nanocomposite for the enhancement of ionic conductivity with no sacrifice of the mechanical properties. Experimental data confirmed the high mobility of ions within the composite electrolyte with an ionic conductivity of 0.189 mS cm-1 in comparison to the SPE without additives (0.105 mS cm-1) at 60 °C. The mobility of the Li+ increases after adding the polymer-coated inorganic additives, associated with a noticeable enlargement of the electrochemical window. Furthermore, an all-solid-state Li/LiFePO4 battery with a hollow polydopamine nanoparticle-polymer composite electrolyte shows long life, high reversible capacity (134.9 mAh g-1), and high capacity retention (97.2%) after 205 cycles at 0.2 C.
Collapse
Affiliation(s)
- Yuhan Li
- School of Materials Science and Chemical Engineering, Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, People's Republic of China
| | - Yanyang Qin
- School of Chemistry, University Engineering Research Center of Shaanxi Province, State key laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jianyun Zhao
- School of Chemistry, University Engineering Research Center of Shaanxi Province, State key laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Mingbo Ma
- School of Chemistry, University Engineering Research Center of Shaanxi Province, State key laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Mengzhu Zhang
- School of Materials Science and Chemical Engineering, Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, People's Republic of China
| | - Ping Li
- CNNC Shaanxi Uranium Enrichment Co., Ltd., Hanzhong 723312, People's Republic of China
| | - Shiyao Lu
- School of Chemistry, University Engineering Research Center of Shaanxi Province, State key laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Huaitian Bu
- Department of Materials and Nanotechnology, SINTEF Industry, Forskningsveien 1, 0373 Oslo, Norway
| | - Kai Xi
- School of Chemistry, University Engineering Research Center of Shaanxi Province, State key laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yaqiong Su
- School of Chemistry, University Engineering Research Center of Shaanxi Province, State key laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Shujiang Ding
- School of Chemistry, University Engineering Research Center of Shaanxi Province, State key laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
5
|
Luo L, Xu Y, Wang D, Feng W, Qiu X. Tuning Active Species in N-Doped Carbon with Fe/Fe 3C Nanoparticles for Efficient Oxygen Reduction Reaction. Inorg Chem 2022; 61:3166-3175. [PMID: 35137576 DOI: 10.1021/acs.inorgchem.1c03573] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Transition metal-nitrogen-carbon (M-N-C) catalysts (M = Fe, Co, etc.) are the most promising substituents of Pt-based catalysts for oxygen reduction reaction (ORR). However, the insufficient active species in catalysts inevitably hamper their widespread applications. Herein, we report the regulation of the active species in the catalysts of multicomponent N-doped carbon with Fe/Fe3C nanoparticles by polydopamine (PDA) coating. It is found that the PDA is conducive to increasing the pyridinic, graphitic, and total N content in the carbon matrix. Benefiting from the chelating effects, the PDA further profits the formation of Fe-Nx structures and the implantation of Fe/Fe3C nanoparticles in the matrix during the pyrolysis. As expected, the resultant catalysts exhibit over 15 times mass activity toward ORR than nitrogen-doped carbon. Moreover, our developed catalysts show long-term stability as well as high methanol tolerance, which is superior to that of the commercial Pt/C electrode. This work provides a new avenue to explore a wider range of high-performance ORR electrocatalysts by regulating the active species.
Collapse
Affiliation(s)
- Li Luo
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Yan Xu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Dongsheng Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Wenhui Feng
- Hunan Province Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha 410022, P. R. China
| | - Xiaoqing Qiu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| |
Collapse
|
6
|
He S, Lu Z, Dai W, Yang K, Xue Y, Jia X, Lin J. Anchoring Water Soluble Phosphotungstic Acid by Hybrid Fillers to Construct Three-Dimensional Proton Transport Networks. MEMBRANES 2021; 11:536. [PMID: 34357185 PMCID: PMC8303771 DOI: 10.3390/membranes11070536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 11/29/2022]
Abstract
Phosphotungstic acid (HPW)-filled composite proton exchange membranes possess high proton conductivity under low relative humidity (RH). However, the leaching of HPW limits their wide application. Herein, we propose a novel approach for anchoring water soluble phosphotungstic acid (HPW) by polydopamine (PDA) coated graphene oxide and halloysite nanotubes (DGO and DHNTs) in order to construct hybrid three-dimensional proton transport networks in a sulfonated poly(ether ether ketone) (SPEEK) membrane. The introduction of PDA on the surfaces of the hybrid fillers could provide hydroxyl groups and secondary amine groups to anchor HPW, resulting in the uniform dispersion of HPW in the SPEEK matrix. The SPEEK/DGO/DHNTs/HPW (90/5/5/60) composite membrane exhibited higher water uptake and much better conductivity than the SPEEK membrane at low relative humidity. The best conductivity reached wass 0.062 S cm-1 for the composite membrane, which is quite stable during the water immersion test.
Collapse
Affiliation(s)
- Shaojian He
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China; (S.H.); (Z.L.); (W.D.); (K.Y.); (X.J.)
| | - Zhongrui Lu
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China; (S.H.); (Z.L.); (W.D.); (K.Y.); (X.J.)
| | - Wenxu Dai
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China; (S.H.); (Z.L.); (W.D.); (K.Y.); (X.J.)
| | - Kangning Yang
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China; (S.H.); (Z.L.); (W.D.); (K.Y.); (X.J.)
| | - Yang Xue
- State Key Laboratory of Multi-Phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoyang Jia
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China; (S.H.); (Z.L.); (W.D.); (K.Y.); (X.J.)
| | - Jun Lin
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China; (S.H.); (Z.L.); (W.D.); (K.Y.); (X.J.)
| |
Collapse
|
7
|
Jing Y, Deng Z, Yang X, Li L, Gao Y, Li W. Ultrathin two-dimensional polydopamine nanosheets for multiple free radical scavenging and wound healing. Chem Commun (Camb) 2021; 56:10875-10878. [PMID: 32940278 DOI: 10.1039/d0cc02888f] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Novel 2D polydopamine nanosheets were successfully prepared by using a simple but effective "bottom-up" synthesis method. The ultrathin polydopamine nanosheets exhibit excellent multiple free radical scavenging activities including DPPH˙ and ABTS˙+ free radicals, especially O2˙-. Full-thickness skin defect regeneration was accelerated by treatment with the nanosheets.
Collapse
Affiliation(s)
- Yasun Jing
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
| | - Zhenru Deng
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
| | - Xiuyun Yang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
| | - Leijiao Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China. and Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, China
| | - Ying Gao
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
| | - Wenliang Li
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, 132013, China.
| |
Collapse
|
8
|
Duraisamy V, Sudha V, Annadurai K, Senthil Kumar SM, Thangamuthu R. Ultrasensitive simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen on a graphitized porous carbon-modified electrode. NEW J CHEM 2021. [DOI: 10.1039/d0nj04806b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
NHCS-1000/GCE produces a noticeable electrocatalytic response towards the anodic oxidation for the multiple sensing of AA, DA, UA and AC.
Collapse
Affiliation(s)
- Velu Duraisamy
- Electroorganic and Materials Electrochemistry (EME) Division
- CSIR-Central Electrochemical Research Institute (CECRI)
- Karaikudi-630 003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Velayutham Sudha
- Electroorganic and Materials Electrochemistry (EME) Division
- CSIR-Central Electrochemical Research Institute (CECRI)
- Karaikudi-630 003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Kuppusamy Annadurai
- Electroorganic and Materials Electrochemistry (EME) Division
- CSIR-Central Electrochemical Research Institute (CECRI)
- Karaikudi-630 003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Sakkarapalayam Murugesan Senthil Kumar
- Electroorganic and Materials Electrochemistry (EME) Division
- CSIR-Central Electrochemical Research Institute (CECRI)
- Karaikudi-630 003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Rangasamy Thangamuthu
- Electroorganic and Materials Electrochemistry (EME) Division
- CSIR-Central Electrochemical Research Institute (CECRI)
- Karaikudi-630 003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
9
|
Affiliation(s)
- Árpád Molnár
- Department of Organic Chemistry University of Szeged Dóm tér 8 Szeged 6720 Hungary
| |
Collapse
|
10
|
Cheng W, Zeng X, Chen H, Li Z, Zeng W, Mei L, Zhao Y. Versatile Polydopamine Platforms: Synthesis and Promising Applications for Surface Modification and Advanced Nanomedicine. ACS NANO 2019; 13:8537-8565. [PMID: 31369230 DOI: 10.1021/acsnano.9b04436] [Citation(s) in RCA: 496] [Impact Index Per Article: 99.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As a mussel-inspired material, polydopamine (PDA), possesses many properties, such as a simple preparation process, good biocompatibility, strong adhesive property, easy functionalization, outstanding photothermal conversion efficiency, and strong quenching effect. PDA has attracted increasingly considerable attention because it provides a simple and versatile approach to functionalize material surfaces for obtaining a variety of multifunctional nanomaterials. In this review, recent significant research developments of PDA including its synthesis and polymerization mechanism, physicochemical properties, different nano/microstructures, and diverse applications are summarized and discussed. For the sections of its applications in surface modification and biomedicine, we mainly highlight the achievements in the past few years (2016-2019). The remaining challenges and future perspectives of PDA-based nanoplatforms are discussed rationally at the end. This timely and overall review should be desirable for a wide range of scientists and facilitate further development of surface coating methods and the production of PDA-based materials.
Collapse
Affiliation(s)
- Wei Cheng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
| | - Xiaowei Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 Singapore
| | - Hongzhong Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 Singapore
| | - Zimu Li
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
| | - Wenfeng Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
| | - Lin Mei
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 Singapore
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 Singapore
| |
Collapse
|
11
|
Affiliation(s)
- Jürgen Liebscher
- Institute of Chemistry; Humboldt-University Berlin; Brook-Taylor-Str. 2 12489 Berlin Germany
| |
Collapse
|