1
|
Huang Y, Xiong D, Wu S, Huang Z, Shen W, Xu H. Preparation of a Nanorod-like Mo-VO x Catalyst for Gas Phase Selective Oxidation of Methyl Lactate with Air. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yijia Huang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai200433, People’s Republic of China
| | - Desheng Xiong
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai200433, People’s Republic of China
- Shanghai Huayi New Material Co., Ltd., Shanghai201507, People’s Republic of China
| | - Shipeng Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai200433, People’s Republic of China
| | - Zhen Huang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai200433, People’s Republic of China
| | - Wei Shen
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai200433, People’s Republic of China
| | - Hualong Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai200433, People’s Republic of China
| |
Collapse
|
2
|
Investigation of In Promotion on Cu/ZrO2 Catalysts and Application in CO2 Hydrogenation to Methanol. Catal Letters 2022. [DOI: 10.1007/s10562-022-04191-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Solvothermal synthesis of micro-cuboid MoV2O8 for vapor-phase ammoxidation of p-chlorotoluene. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04801-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
4
|
Fu C, She Q, Tesser R, Zhou CH. Cleaner One-Pot Transformation of Glycerol to Acrylic Acid and 1,2-Propanediol over Cu2O/Montmorillonite Bifunctional Catalysts Without External Oxygen and Hydrogen. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02359d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient conversion of glycerol, an inevitable by-product of the transesterification process producing biodiesel, to acrylic acid (AA) and 1,2-propanediol (1,2-PDO) via a cleaner process is much attractive and challenging. In...
Collapse
|
5
|
Najafishirtari S, Friedel Ortega K, Douthwaite M, Pattisson S, Hutchings GJ, Bondue CJ, Tschulik K, Waffel D, Peng B, Deitermann M, Busser GW, Muhler M, Behrens M. A Perspective on Heterogeneous Catalysts for the Selective Oxidation of Alcohols. Chemistry 2021; 27:16809-16833. [PMID: 34596294 PMCID: PMC9292687 DOI: 10.1002/chem.202102868] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 01/15/2023]
Abstract
Selective oxidation of higher alcohols using heterogeneous catalysts is an important reaction in the synthesis of fine chemicals with added value. Though the process for primary alcohol oxidation is industrially established, there is still a lack of fundamental understanding considering the complexity of the catalysts and their dynamics under reaction conditions, especially when higher alcohols and liquid-phase reaction media are involved. Additionally, new materials should be developed offering higher activity, selectivity, and stability. This can be achieved by unraveling the structure-performance correlations of these catalysts under reaction conditions. In this regard, researchers are encouraged to develop more advanced characterization techniques to address the complex interplay between the solid surface, the dissolved reactants, and the solvent. In this mini-review, we report some of the most important approaches taken in the field and give a perspective on how to tackle the complex challenges for different approaches in alcohol oxidation while providing insight into the remaining challenges.
Collapse
Affiliation(s)
- Sharif Najafishirtari
- Faculty of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenCarl-Benz-Straße 19947057DuisburgGermany
| | - Klaus Friedel Ortega
- Institute of Inorganic ChemistryKiel UniversityMax-Eyth-Straße 224118KielGermany
| | - Mark Douthwaite
- Cardiff Catalysis InstituteCardiff UniversityCF10 3ATCardiffUnited Kingdom
| | - Samuel Pattisson
- Cardiff Catalysis InstituteCardiff UniversityCF10 3ATCardiffUnited Kingdom
| | | | - Christoph J. Bondue
- Faculty of Chemistry and BiochemistryLab. of Electrochemistry & Nanoscale MaterialsRuhr-University BochumUniversitätsstraße. 150, ZEMOS 1.4144780BochumGermany
| | - Kristina Tschulik
- Faculty of Chemistry and BiochemistryLab. of Electrochemistry & Nanoscale MaterialsRuhr-University BochumUniversitätsstraße. 150, ZEMOS 1.4144780BochumGermany
| | - Daniel Waffel
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - Baoxiang Peng
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - Michel Deitermann
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - G. Wilma Busser
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - Martin Muhler
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - Malte Behrens
- Faculty of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenCarl-Benz-Straße 19947057DuisburgGermany
- Institute of Inorganic ChemistryKiel UniversityMax-Eyth-Straße 224118KielGermany
| |
Collapse
|
6
|
Rasteiro LF, Rossi MA, Assaf JM, Assaf EM. Low-pressure hydrogenation of CO2 to methanol over Ni-Ga alloys synthesized by a surfactant-assisted co-precipitation method and a proposed mechanism by DRIFTS analysis. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.05.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Abdullah A, Abdullah AZ, Ahmed M, Okoye PU, Shahadat M. A review on bi/multifunctional catalytic oxydehydration of bioglycerol to acrylic acid: Catalyst type, kinetics, and reaction mechanism. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Anas Abdullah
- School of Chemical Engineering Universiti Sains Malaysia Nibong Tebal Malaysia
| | | | - Mukhtar Ahmed
- School of Chemical Engineering Universiti Sains Malaysia Nibong Tebal Malaysia
| | - Patrick U. Okoye
- Laboratorio de Bioenergía Instituto de Energías Renovables (IER‐UNAM) Temixco Mexico
| | - Mohammad Shahadat
- School of Chemical Engineering Universiti Sains Malaysia Nibong Tebal Malaysia
- Department of Biochemical Engineering and Biotechnology Indian Institute of Technology IIT Delhi India
| |
Collapse
|
8
|
Kumari S, Chowdhury A, Khan AA, Hussain S. Controlled surface functionalization of Ni-S nanostructures for pH-responsive selective and superior pollutants adsorption. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125750. [PMID: 34088205 DOI: 10.1016/j.jhazmat.2021.125750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Herein, we developed a synthetic strategy to functionalize Ni-S nanostructures (NS) using a facile precipitation method at moderate temperature. The surface functionality of NS is controlled by varying amount of mixed surfactants to achieve the pH-responsive selective adsorption of anionic and cationic dyes and the adsorption of ciprofloxacin (CIP) and tetracycline (TC) antibiotics. Powder XRD diffraction pattern revealed the phase of NS was changed from α-NiS to mixed phases after functionalization. The surface area of functionalized NS was significantly enhanced by ~5 times of that unfunctionalized NS as 6.6 m2g-1 to 30.3 m2g-1. The NS selectively adsorbed methyl orange (MO) at pH 4.5 and methylene blue (MB) at pH 11.5 with separation efficiency values of 94.2% and 97.9% respectively. The maximum adsorption capacity for MO, MB, TC and CIP are obtained as 1526.3, 1031.2, 1540.8 and 632.4 mg g-1, respectively. The electrostatic interaction is predominantly involved in the adsorption of dyes whereas adsorption of antibiotics changed to hydrogen bonding and metal coordination. Thermodynamics parameters indicated exothermic and spontaneous adsorption of dyes. The optimized adsorbent is easily recyclable. Thus, the developed strategy of functionalization of nanostructures unveils a practical approach towards selective and efficient adsorption of organic pollutants.
Collapse
Affiliation(s)
- Sunita Kumari
- Department of Chemistry, Indian Institute of Technology Patna, Bihta 801106, Bihar, India
| | - Arif Chowdhury
- Department of Chemistry, Indian Institute of Technology Patna, Bihta 801106, Bihar, India
| | - Afaq Ahmad Khan
- Department of Chemistry, Indian Institute of Technology Patna, Bihta 801106, Bihar, India
| | - Sahid Hussain
- Department of Chemistry, Indian Institute of Technology Patna, Bihta 801106, Bihar, India.
| |
Collapse
|
9
|
Deng L, Li S, Liu Y, Lu Z, Fan Y, Yan Y, Yu S. Effect of Ce doping on the structure–activity relationship of MoVO x composite metal oxides. RSC Adv 2021; 11:36007-36015. [PMID: 35492786 PMCID: PMC9043333 DOI: 10.1039/d1ra05531c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/21/2021] [Indexed: 11/21/2022] Open
Abstract
Ce-doped MoVOx with disperse rod-shaped exhibits excellent catalytic performance in selective oxidation of benzyl alcohol.
Collapse
Affiliation(s)
- Luyao Deng
- College of Chemical Engineering, Shenyang University of Chemical Technology, No. 9, 11 St., Shenyang Economic & Technological Development Zone, Shenyang 110142, China
| | - Shuangming Li
- College of Chemical Engineering, Shenyang University of Chemical Technology, No. 9, 11 St., Shenyang Economic & Technological Development Zone, Shenyang 110142, China
- Key Laboratory of Chemical Separation Technology of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yongwei Liu
- College of Chemical Engineering, Shenyang University of Chemical Technology, No. 9, 11 St., Shenyang Economic & Technological Development Zone, Shenyang 110142, China
| | - Zixuan Lu
- College of Chemical Engineering, Shenyang University of Chemical Technology, No. 9, 11 St., Shenyang Economic & Technological Development Zone, Shenyang 110142, China
| | - Yaoxin Fan
- College of Chemical Engineering, Shenyang University of Chemical Technology, No. 9, 11 St., Shenyang Economic & Technological Development Zone, Shenyang 110142, China
| | - Yunong Yan
- College of Chemical Engineering, Shenyang University of Chemical Technology, No. 9, 11 St., Shenyang Economic & Technological Development Zone, Shenyang 110142, China
| | - Sansan Yu
- College of Chemical Engineering, Shenyang University of Chemical Technology, No. 9, 11 St., Shenyang Economic & Technological Development Zone, Shenyang 110142, China
- Key Laboratory of Chemical Separation Technology of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China
| |
Collapse
|
10
|
Wu ST, She QM, Tesser R, Serio MD, Zhou CH. Catalytic glycerol dehydration-oxidation to acrylic acid. CATALYSIS REVIEWS 2020. [DOI: 10.1080/01614940.2020.1719611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Shu Tao Wu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Qi Ming She
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
- College of Chemistry and Chemical Engineering, Huangshan University, Huangshan, China
| | - Riccardo Tesser
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Martino Di Serio
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Chun Hui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, China National Bamboo Research Center, Hangzhou, China
| |
Collapse
|