1
|
Do Quynh Nhu N, Nguyen TA, Tran Truc Phuong N, Tho LH, Huong VT, Pham ATT, Tran NQ, Tran NHT. Facile Fabrication of SERS Substrates by the Electrodeposition Method to Detect Pesticides with High Enhancement Effect and Long-Term Stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13292-13302. [PMID: 38871669 DOI: 10.1021/acs.langmuir.4c01651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
In this study, surface-enhanced Raman scattering substrates were investigated by the electrodeposition method to detect low concentrations of pesticides via the electrodeposition method with different agents from silver and gold precursors on APTES-modified ITO glass. A dual-potential method supplied three electrodes and was performed with a nucleation potential of 0.7 V for 2 s and a growth potential of -0.2 V for 500 s. The Ag film produced by the electrodeposition approach has great surface uniformity and good SERS signal amplification for the thiram insecticide at low concentrations. Interestingly, the ITO/APTES/Ag substrate extensively increased the sensitivity than the other investigated ones, thanks to the adequate assistance of amino groups of APTES in the denser and hierarchical deposition of Ag NPs. These observations were additionally elucidated via finite-difference time-domain (FDTD) calculation. For thiram, the detection was set at 10-8 M with an enhancement factor of up to 3.6 × 107 times. Comparing the SERS spectra of thiram at concentrations of 10-3, 10-4, and 10-5 M with a relative standard deviation (RSD) of less than 7.0% demonstrates excellent reproducibility of the ITO/APTES/Ag substrate. In addition, the special selectivity of the ITO/APTES/Ag substrate for thiram demonstrates that these nanostructures can identify pesticides with extreme sensitivity.
Collapse
Affiliation(s)
- Nguyen Do Quynh Nhu
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Viet Nam
- Vietnam National University, Ho Chi Minh City 700000, Viet Nam
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City 700000, Viet Nam
| | - Thuy-An Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 70000, Viet Nam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang City 50000, Viet Nam
| | - Nguyen Tran Truc Phuong
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Viet Nam
- Vietnam National University, Ho Chi Minh City 700000, Viet Nam
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City 700000, Viet Nam
| | - Le Hong Tho
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Viet Nam
- Vietnam National University, Ho Chi Minh City 700000, Viet Nam
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City 700000, Viet Nam
| | - Vu Thi Huong
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 06978, Republic of Korea
| | - Anh Tuan Thanh Pham
- Vietnam National University, Ho Chi Minh City 700000, Viet Nam
- Laboratory of Advanced Materials, University of Science, Ho Chi Minh City 700000, Viet Nam
| | - Ngoc Quang Tran
- Vietnam National University, Ho Chi Minh City 700000, Viet Nam
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City 700000, Viet Nam
| | - Nhu Hoa Thi Tran
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Viet Nam
- Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| |
Collapse
|
2
|
Tian L, Chen C, Gong J, Han Q, Shi Y, Li M, Cheng L, Wang L, Dong B. The Convenience of Polydopamine in Designing SERS Biosensors with a Sustainable Prospect for Medical Application. SENSORS (BASEL, SWITZERLAND) 2023; 23:4641. [PMID: 37430555 PMCID: PMC10223239 DOI: 10.3390/s23104641] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 07/12/2023]
Abstract
Polydopamine (PDA) is a multifunctional biomimetic material that is friendly to biological organisms and the environment, and surface-enhanced Raman scattering (SERS) sensors have the potential to be reused. Inspired by these two factors, this review summarizes examples of PDA-modified materials at the micron or nanoscale to provide suggestions for designing intelligent and sustainable SERS biosensors that can quickly and accurately monitor disease progression. Undoubtedly, PDA is a kind of double-sided adhesive, introducing various desired metals, Raman signal molecules, recognition components, and diverse sensing platforms to enhance the sensitivity, specificity, repeatability, and practicality of SERS sensors. Particularly, core-shell and chain-like structures could be constructed by PDA facilely, and then combined with microfluidic chips, microarrays, and lateral flow assays to provide excellent references. In addition, PDA membranes with special patterns, and hydrophobic and strong mechanical properties can be used as independent platforms to carry SERS substances. As an organic semiconductor material capable of facilitating charge transfer, PDA may possess the potential for chemical enhancement in SERS. In-depth research on the properties of PDA will be helpful for the development of multi-mode sensing and the integration of diagnosis and treatment.
Collapse
Affiliation(s)
- Lulu Tian
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; (L.T.); (J.G.); (Q.H.)
| | - Cong Chen
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; (L.T.); (J.G.); (Q.H.)
| | - Jing Gong
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; (L.T.); (J.G.); (Q.H.)
| | - Qi Han
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; (L.T.); (J.G.); (Q.H.)
| | - Yujia Shi
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; (L.T.); (J.G.); (Q.H.)
| | - Meiqi Li
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; (L.T.); (J.G.); (Q.H.)
| | - Liang Cheng
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; (L.T.); (J.G.); (Q.H.)
| | - Lin Wang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; (L.T.); (J.G.); (Q.H.)
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130021, China
| |
Collapse
|
3
|
Yu J, Wu J, Yang H, Li P, Liu J, Wang M, Pang J, Li C, Yang C, Xu K. Extremely Sensitive SERS Sensors Based on a Femtosecond Laser-Fabricated Superhydrophobic/-philic Microporous Platform. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43877-43885. [PMID: 36101984 DOI: 10.1021/acsami.2c10381] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The detection of molecules from highly diluted solutions with a limited amount is vital for precancer diagnosis, food safety, and forensic analysis. The sensitivity and convenience of detection techniques are the primary concerns. In this study, a hybrid superhydrophobic/-philic (SH/SHL) microporous platform is designed and fabricated by a femtosecond laser to improve surface-enhanced Raman scattering (SERS) performances. Relying on the micropores fabricated at the center of SHL patterns, sediments distributed at the central regions are avoided, leading to the further enrichment of the target molecules. The engineered micropores with high identification further improve the speed of Raman tests, and the fabricated SERS substrate shows an advantage in outdoor handheld detection and automated inspection applications. The optimized SERS sensor is sufficient for attomolar-level detection (10-17 M) of rhodamine 6G using analyte volumes of just 5 μL, corresponding to an enhancement factor of 5.19 × 1013. Meanwhile, a relative standard deviation of 7.48% at 10-10 M shows the excellent uniformity of this proposed SERS platform. This work further pushes forward the practical applications of SERS technology in ultratrace molecular detections.
Collapse
Affiliation(s)
- Jian Yu
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China
- Wenzhou University Pingyang Institute and Intelligent Manufacturing, Wenzhou 325035, China
| | - Jiangen Wu
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China
| | - Huan Yang
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China
| | - Pei Li
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Jing Liu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Meng Wang
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China
| | - Jihong Pang
- College of Business, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Chunbo Li
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China
| | - Can Yang
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China
| | - Kaichen Xu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
4
|
Yang H, Gun X, Pang G, Zheng Z, Li C, Yang C, Wang M, Xu K. Femtosecond laser patterned superhydrophobic/hydrophobic SERS sensors for rapid positioning ultratrace detection. OPTICS EXPRESS 2021; 29:16904-16913. [PMID: 34154243 DOI: 10.1364/oe.423789] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
Ultratrace molecular detections are vital for precancer diagnosis, forensic analysis, and food safety. Superhydrophobic (SH) surface-enhanced Raman scattering (SERS) sensors are regarded as an ideal approach to improve detection performance by concentrating analyte molecules within a small volume. However, due to the low adhesion of SH surfaces, the analyte droplet is prone to rolling, making it hard to deposit molecules on a predetermined position. Furthermore, the sediment with a very small area on the SH-SERS surface is difficult to be captured even with a Raman microscope. In this study, femtosecond laser fabricated hybrid SH/hydrophobic (SH/HB) surfaces are successfully applied to realize a rapid and highly sensitive SERS detection. By modulating dual surface structures and wetting behaviors, the analyte molecules can be enriched at the edge of HB pattern. This improves the convenience and speed of Raman test. On a hybrid SH/HB SERS substrate with a circular HB pattern at 300-µm-diameter, a femtomolar level (10-14 M) of rhodamine 6G can be detected by using analyte volumes of just 5 µL. The SERS enhancement factor can reach 5.7×108 and a good uniformity with a relative standard deviation of 6.98% is achieved. Our results indicate that the laser fabrication of hybrid SERS sensor offers an efficient and cost-effective approach for ultratrace molecular detection.
Collapse
|
5
|
Lee J, Min K, Kim Y, Yu HK. Surface-Enhanced Raman Spectroscopy (SERS) Study Using Oblique Angle Deposition of Ag Using Different Substrates. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1581. [PMID: 31091815 PMCID: PMC6566392 DOI: 10.3390/ma12101581] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 11/26/2022]
Abstract
The oblique angle deposition of Ag with different deposition rates and substrates was studied for surface-enhanced Raman spectroscopy (SERS) efficiency. The deposition rate for the Ag substrate with maximum SERS efficiency was optimized to 2.4 Å/s. We also analyzed the morphology of Ag nanorods deposited at the same rate on various substrates and compared their SERS intensities. Ag deposited on SiO2, sapphire, and tungsten showed straight nanorods shape and showed relatively high SERS efficiency. However, Ag deposited on graphene or plasma-treated SiO2 substrate was slightly or more aggregated (due to high surface energy) and showed low SERS efficiency.
Collapse
Affiliation(s)
- Jaeyeong Lee
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.
- Department of Materials Science and Engineering, Ajou University, Suwon 16499, Korea.
| | - Kyungchan Min
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.
| | - Youngho Kim
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.
- Department of Materials Science and Engineering, Ajou University, Suwon 16499, Korea.
| | - Hak Ki Yu
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.
- Department of Materials Science and Engineering, Ajou University, Suwon 16499, Korea.
| |
Collapse
|
6
|
Zhao N, Li H, Tian C, Xie Y, Feng Z, Wang Z, Yan X, Wang W, Yu H. Bioscaffold arrays decorated with Ag nanoparticles as a SERS substrate for direct detection of melamine in infant formula. RSC Adv 2019; 9:21771-21776. [PMID: 35518849 PMCID: PMC9066452 DOI: 10.1039/c9ra01862j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/09/2019] [Indexed: 01/05/2023] Open
Abstract
Three-dimensional (3D) plasmonic structures have been intensively investigated as high performance surface enhanced Raman scattering (SERS) substrates. Here, we demonstrate a 3D biomimetic SERS substrate prepared by deposition of silver nanoparticles (Ag NPs) on the bioscaffold arrays of cicada wings using laser molecular beam epitaxy. This deposition method can offer a large number of nanoparticles with average diameter of ∼10 nm and nanogaps of sub-10 nm on the surface of chitin nanopillars to generate a high density of hotspots. The prepared 3D Ag/cicada SERS substrate shows a limit of detection (LOD) for Rhodamine 6G as low as 10−7 M, high enhancement factor of 1.09 × 105, and excellent signal uniformity of 6.8%. Moreover, the molecular fingerprints of melamine in infant formula can be directly extracted with an LOD as low as 10 mg L−1, without the need for functional modification. The prepared SERS-active substrate, due to its low cost, high-throughput, and good detection performance, can be widely used in applications such as food safety and environmental monitoring. Three-dimensional (3D) plasmonic structures have been intensively investigated as high performance surface enhanced Raman scattering (SERS) substrates.![]()
Collapse
Affiliation(s)
- Nan Zhao
- School of Physics Science and Information Technology
- Shandong Key Laboratory of Optical Communication Science and Technology
- Liaocheng University
- Liaocheng 252059
- China
| | - Hefu Li
- School of Physics Science and Information Technology
- Shandong Key Laboratory of Optical Communication Science and Technology
- Liaocheng University
- Liaocheng 252059
- China
| | - Cunwei Tian
- School of Physics Science and Information Technology
- Shandong Key Laboratory of Optical Communication Science and Technology
- Liaocheng University
- Liaocheng 252059
- China
| | - Yanru Xie
- School of Physics Science and Information Technology
- Shandong Key Laboratory of Optical Communication Science and Technology
- Liaocheng University
- Liaocheng 252059
- China
| | - Zhenbao Feng
- School of Physics Science and Information Technology
- Shandong Key Laboratory of Optical Communication Science and Technology
- Liaocheng University
- Liaocheng 252059
- China
| | - Zongliang Wang
- School of Physics Science and Information Technology
- Shandong Key Laboratory of Optical Communication Science and Technology
- Liaocheng University
- Liaocheng 252059
- China
| | - Xunling Yan
- School of Physics Science and Information Technology
- Shandong Key Laboratory of Optical Communication Science and Technology
- Liaocheng University
- Liaocheng 252059
- China
| | - Wenjun Wang
- School of Physics Science and Information Technology
- Shandong Key Laboratory of Optical Communication Science and Technology
- Liaocheng University
- Liaocheng 252059
- China
| | - Huishan Yu
- School of Physics Science and Information Technology
- Shandong Key Laboratory of Optical Communication Science and Technology
- Liaocheng University
- Liaocheng 252059
- China
| |
Collapse
|