1
|
Drevet JR, Hallak J, Nasr-Esfahani MH, Aitken RJ. Reactive Oxygen Species and Their Consequences on the Structure and Function of Mammalian Spermatozoa. Antioxid Redox Signal 2022; 37:481-500. [PMID: 34913729 DOI: 10.1089/ars.2021.0235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Significance: Among the 200 or so cell types that comprise mammals, spermatozoa have an ambiguous relationship with the reactive oxygen species (ROS) inherent in the consumption of oxygen that supports aerobic metabolism. Recent Advances: In this review, we shall see that spermatozoa need the action of ROS to reach their structural and functional maturity, but that due to intrinsic unique characteristics, they are, perhaps more than any other cell type, susceptible to oxidative damage. Recent studies have improved our knowledge of how oxidative damage affects sperm structures and functions. The focus of this review will be on how genetic and epigenetic oxidative alterations to spermatozoa can have dramatic unintended consequences in terms of both the support and the suppression of sperm function. Critical Issues: Oxidative stress can have dramatic consequences not only for the spermatozoon itself, but also, and above all, on its primary objective, which is to carry out fertilization and to ensure, in part, that the embryonic development program should lead to a healthy progeny. Future Directions: Sperm oxidative DNA damage largely affects the integrity of the paternal genetic material to such an extent that the oocyte may have difficulties in correcting it. Diagnostic and therapeutic actions should be considered more systematically, especially in men with difficulties to conceive. Research is underway to determine whether the epigenetic information carried by spermatozoa is also subject to changes mediated by pro-oxidative situations. Antioxid. Redox Signal. 37, 481-500.
Collapse
Affiliation(s)
- Joël R Drevet
- Faculty of Medicine, GReD Institute, INSERM U1103-CNRS UMR6293-Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jorge Hallak
- Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Research Andrology Laboratory, São Paulo, Brazil.,Division of Urology, University of São Paulo, São Paulo, Brazil.,Men's Health Study Group, Institute for Advanced Studies, University of São Paulo, São Paulo, Brazil.,Reproductive Toxicology Unit, Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Mohammad-Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,Isfahan Fertility and Infertility Center, Isfahan, Iran
| | - Robert J Aitken
- Faculty of Science and Priority Research Center for Reproductive Sciences, The University of Newcastle, Callaghan, Australia.,Faculty of Health and Medicine, Priority Research Center for Reproductive Sciences, The University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia
| |
Collapse
|