1
|
Raj A, Thomas RK, Vidya L, Neelima S, Aparna VM, Sudarsanakumar C. A Minor Groove Binder with Significant Cytotoxicity on Human Lung Cancer Cells: The Potential of Hesperetin Functionalised Silver Nanoparticles. J Fluoresc 2024; 34:2179-2196. [PMID: 37721707 DOI: 10.1007/s10895-023-03409-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023]
Abstract
Natural drug functionalised silver (Ag) nanoparticles (NPs) have gained significant interest in pharmacology related applications due to their therapeutic efficiency. We have synthesised silver nanoparticle using hesperetin as a reducing and capping agent. This work aims to discuss the relevance of the hesperetin functionalised silver nanoparticles (H-AgNPs) in the field of nano-medicine. The article primarily investigates the anticancer activity of H-AgNPs and then their interactions with calf thymus DNA (ctDNA) through spectroscopic and thermodynamic techniques. The green synthesised H-AgNPs are stable, spherical in shape and size of 10 ± 3 nm average diameter. The complex formation of H-AgNPs with ctDNA was established by UV-Visible absorption, fluorescent dye displacement assay, isothermal calorimetry and viscosity measurements. The binding constants obtained from these experiments were consistently in the order of 104 Mol-1. The melting temperature analysis and FTIR measurements confirmed that the structural alterations of ctDNA by the presence of H-AgNPs are minimal. All the thermodynamic variables and the endothermic binding nature were acquired from ITC experiments. All these experimental outcomes reveal the formation of H-AgNPs-ctDNA complex, and the results consistently verify the minor groove binding mode of H-AgNPs. The binding constant and limit of detection of 1.8 μM found from the interaction studies imply the DNA detection efficiency of H-AgNPs. The cytotoxicity of H-AgNPs against A549 and L929 cell lines were determined by in vitro MTT cell viability assay and lactate dehydrogenase (LDH) assay. The cell viability and LDH enzyme release are confirmed that the H-AgNPs has high anticancer activity. Moreover, the calculated LD50 value for H-AgNPs against lung cancer cells is 118.49 µl/ml, which is a low value comparing with the value for fibroblast cells (269.35 µl/ml). In short, the results of in vitro cytotoxicity assays revealed that the synthesised nanoparticles can be considered in applications related to cancer treatments. Also, we have found that, H-AgNPs is a minor groove binder, and having high DNA detection efficiency.
Collapse
Affiliation(s)
- Aparna Raj
- School of Pure & Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India
| | - Riju K Thomas
- School of Pure & Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India
- Bharata Mata College, Thrikkakara, Ernakulam, Kerala, 682032, India
| | - L Vidya
- School of Pure & Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India
| | - S Neelima
- School of Pure & Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India
| | - V M Aparna
- School of Pure & Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India
| | - C Sudarsanakumar
- School of Pure & Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India.
| |
Collapse
|
2
|
He F, Cao J, Qi J, Liu Z, Liu G, Deng W. Regulation of Stem Cell Differentiation by Inorganic Nanomaterials: Recent Advances in Regenerative Medicine. Front Bioeng Biotechnol 2021; 9:721581. [PMID: 34660552 PMCID: PMC8514676 DOI: 10.3389/fbioe.2021.721581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/15/2021] [Indexed: 02/04/2023] Open
Abstract
Transplanting stem cells with the abilities of self-renewal and differentiation is one of the most effective ways to treat many diseases. In order to optimize the therapeutic effect of stem cell transplantation, it is necessary to intervene in stem cell differentiation. Inorganic nanomaterials (NMs), due to their unique physical and chemical properties, can affect the adhesion, migration, proliferation and differentiation of stem cells. In addition, inorganic NMs have huge specific surface area and modifiability that can be used as vectors to transport plasmids, proteins or small molecules to further interfere with the fate of stem cells. In this mini review, we summarized the recent advances of common inorganic NMs in regulating stem cells differentiation, and the effects of the stiffness, size and shape of inorganic NMs on stem cell behavior were discussed. In addition, we further analyzed the existing obstacles and corresponding perspectives of the application of inorganic NMs in the field of stem cells.
Collapse
Affiliation(s)
- Fumei He
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Jinxiu Cao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Junyang Qi
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Zeqi Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Gan Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
3
|
Abstract
This feature article begins by outlining the problem of infection and its implication on healthcare. The initial introductory section is followed by a description of the four distinct classes of antibacterial coatings and materials, i.e., bacteria repealing, contact killing, releasing and responsive, that were developed over the years by our team and others. Specific examples of each individual class of antibacterial materials and a discussion on the pros and cons of each strategy are provided. The article contains a dedicated section focused on silver nanoparticle based coatings and materials, which have attracted tremendous interest from the scientific and medical communities. The article concludes with the author’s view regarding the future of the field.
Collapse
|