1
|
Kong W, Ge X, Lu X, Zhang Q, Zhang M, Feng Y. The Simpler the Better: Ultrafast Air-Plasma Synthesis of 3D Crosslinked Graphene Nanoscroll-Nanosheet Aerogels at Room Temperature for Capacitive Deionization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402057. [PMID: 38751062 DOI: 10.1002/smll.202402057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/27/2024] [Indexed: 10/04/2024]
Abstract
Graphene nanoscroll (GNS) is an important 1D tubular form of graphene-derivative materials, which has garnered widely attention. However, conventional fabrication methods commonly suffer from complex processing and time-consuming. Herein, with graphene oxide (GO) as a precursor, the study puts forward a facile air-plasma synthesis strategy to fabricate 3D graphene nanoscroll-nanosheet aerogels (GSSA). It is demonstrated that without using any chemical additives, a highly efficient reduction-exfoliation-scrolling process can be achieved all-in-one at room temperature within 1 s. The GNSs "grew" from 2D graphene sheets and firmly cross-linked them together, and they not only provide a shortcut path for electron transport but also act as intrinsic spacers to prevent restacking of graphene sheets. When using as an electrode material for capacitive deionization (CDI), GSSA exhibits excellent merits of salt-removal performance. These findings open a new pathway to large-scale synthesis of high-quality and high-purity GNS-based materials with promising applications in CDI and beyond.
Collapse
Affiliation(s)
- Weiqing Kong
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China
| | - Xu Ge
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China
| | - Xiaoyuan Lu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China
| | - Qingao Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China
| | - Meng Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China
| | - Yuanyuan Feng
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China
| |
Collapse
|
2
|
Saini S, Reshmi S, Gouda GM, Bhattacharjee K. Emergence of carbon nanoscrolls from single walled carbon nanotubes: an oxidative route. Phys Chem Chem Phys 2021; 23:27437-27448. [PMID: 34860230 DOI: 10.1039/d1cp03945h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon nanoscrolls (CNS), a one dimensional (1D) helical form of carbon, have received enormous attention recently due to their unique structure, superior properties and potential applications. In this work, radial merging of HiPCO single walled nanotube (SWNT) bundles and emergence of CNS are reported following a reflux action involving wet oxidation, HCl washing and annealing at 900 °C. We observe macroscopic quantities of graphene sheets (GS) in the post-treated sample and beautiful manifestation of curling and folding of the GS into CNS. Here, a simple solution based oxidative route for successful merging and exfoliation of SWNT bundles and subsequent formation of CNS are demonstrated and discussed in view of Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) studies. Direct evidence of emergence of CNS from SWNTs via synthesis of GS through a simple oxidative method is reported for the first time.
Collapse
Affiliation(s)
- Sonia Saini
- Indian Institute of Space Science and Technology (IIST), Thiruvanthapuram, 695 547, India. .,Laboratory for Electro-Optics Systems (LEOS), Indian Space Research Organization (ISRO), Bengaluru, 560 058, India
| | - S Reshmi
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, Odisha, India
| | - Girish M Gouda
- Laboratory for Electro-Optics Systems (LEOS), Indian Space Research Organization (ISRO), Bengaluru, 560 058, India
| | - Kuntala Bhattacharjee
- Indian Institute of Space Science and Technology (IIST), Thiruvanthapuram, 695 547, India. .,Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, Odisha, India
| |
Collapse
|
3
|
Shih YJ, Wu MS. Nitrogen-doped and reduced graphene oxide scrolls derived from chemical exfoliation of vapor-grown carbon fibers for electrochemical supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136503] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Vimalanathan K, Suarez-Martinez I, Peiris MCR, Antonio J, de Tomas C, Zou Y, Zou J, Duan X, Lamb RN, Harvey DP, Alharbi TMD, Gibson CT, Marks NA, Darwish N, Raston CL. Vortex fluidic mediated transformation of graphite into highly conducting graphene scrolls. NANOSCALE ADVANCES 2019; 1:2495-2501. [PMID: 36132736 PMCID: PMC9417623 DOI: 10.1039/c9na00184k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/06/2019] [Indexed: 05/22/2023]
Abstract
Two-dimensional graphene has remarkable properties that are revolutionary in many applications. Scrolling monolayer graphene with precise tunability would create further potential for niche applications but this has proved challenging. We have now established the ability to fabricate monolayer graphene scrolls in high yield directly from graphite flakes under non-equilibrium conditions at room temperature in dynamic thin films of liquid. Using conductive atomic force microscopy we demonstrate that the graphene scrolls form highly conducting electrical contacts to highly oriented pyrolytic graphite (HOPG). These highly conducting graphite-graphene contacts are attractive for the fabrication of interconnects in microcircuits and align with the increasing interest in building all sp2-carbon circuits. Above a temperature of 450 °C the scrolls unravel into buckled graphene sheets, and this process is understood on a theoretical basis. These findings augur well for new applications, in particular for incorporating the scrolls into miniaturized electronic devices.
Collapse
Affiliation(s)
- Kasturi Vimalanathan
- Flinders Institute for Nanoscale Science & Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
| | - Irene Suarez-Martinez
- Department of Physics and Astronomy, Curtin University Bentley Campus Perth WA 6102 Australia
| | - M Chandramalika R Peiris
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecule and Interfaces, Curtin University Bentley WA 6102 Australia
| | - Joshua Antonio
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecule and Interfaces, Curtin University Bentley WA 6102 Australia
| | - Carla de Tomas
- Department of Physics and Astronomy, Curtin University Bentley Campus Perth WA 6102 Australia
| | - Yichao Zou
- School of Engineering, The University of Queensland Brisbane QLD 4072 Australia
| | - Jin Zou
- School of Engineering, The University of Queensland Brisbane QLD 4072 Australia
| | - Xiaofei Duan
- Trace Analysis for Chemical, Earth and Environmental Sciences (TrACEES), The University of Melbourne Victoria 3010 Australia
| | - Robert N Lamb
- Trace Analysis for Chemical, Earth and Environmental Sciences (TrACEES), The University of Melbourne Victoria 3010 Australia
| | - David P Harvey
- Flinders Institute for Nanoscale Science & Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
| | - Thaar M D Alharbi
- Flinders Institute for Nanoscale Science & Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
| | - Christopher T Gibson
- Flinders Institute for Nanoscale Science & Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
- Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University Adelaide South Australia 5042 Australia
| | - Nigel A Marks
- Department of Physics and Astronomy, Curtin University Bentley Campus Perth WA 6102 Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecule and Interfaces, Curtin University Bentley WA 6102 Australia
| | - Colin L Raston
- Flinders Institute for Nanoscale Science & Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
| |
Collapse
|
5
|
In situ synthesis of Mn3O4 on Ni foam/graphene substrate as a newly self-supported electrode for high supercapacitive performance. J Colloid Interface Sci 2019; 534:665-671. [DOI: 10.1016/j.jcis.2018.09.077] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/19/2018] [Accepted: 09/22/2018] [Indexed: 11/22/2022]
|
6
|
Huang B, Zhao Z, Chen J, Sun Y, Yang X, Wang J, Shen H, Jin Y. Facile synthesis of an all-in-one graphene nanosheets@nickel electrode for high-power performance supercapacitor application. RSC Adv 2018; 8:41323-41330. [PMID: 35559327 PMCID: PMC9091682 DOI: 10.1039/c8ra06531d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/20/2018] [Indexed: 11/21/2022] Open
Abstract
We report a facile and novel approach for the fabrication of all-in-one supercapacitor electrodes by in situ electrochemical exfoliation of flexible graphite paper (FGP) on a nickel collector. The binder-free three dimensional (3D) graphene nanosheets@Ni (GNSs@Ni) supercapacitor electrodes exhibit a high specific capacitance of 196.4 F g−1 and 36.2 mF cm−2, respectively, at a scan rate of 50 mV s−1. Even at the high scan rate of 2500 mV s−1 the specific capacitance of the capacitor still shows a retention of 85.6% (168 F g−1, 31 mF cm−2). Meanwhile, the as-prepared electrode offers excellent cycling performance with 91.5% capacitance retention after 100 000 charging–discharging cycles even at the high current density of 11 A g−1. Such high rate capability, specific capacitance and exceptional cycling ability of the GNSs@Ni electrode are attributed to the all-in-one architecture which provides unique properties including high electrical conductivity, large specific surface area and excellent electrochemical stability. We anticipate that these results will shed light on new strategies to synthesize high-performance hybrid nanoarchitectures electrodes using the prepared graphene nanosheets as the support, which offers great potential in energy storage devices and electrochemical catalysis applications. GNSs@Ni electrode has a high current density, and the Cm and Cs are estimated to be 196.4 F g−1 and 36.2 mF cm−2.![]()
Collapse
Affiliation(s)
- Bing Huang
- Institute of New Energy on Chemical Storage and Power Sources, College of Applied Chemistry and Environmental Engineering, Yancheng Teachers University Yancheng 224000 China +86 515 68665372 +86 515 68665372
| | - Zhiyuan Zhao
- Institute of New Energy on Chemical Storage and Power Sources, College of Applied Chemistry and Environmental Engineering, Yancheng Teachers University Yancheng 224000 China +86 515 68665372 +86 515 68665372
| | - Jian Chen
- Institute of New Energy on Chemical Storage and Power Sources, College of Applied Chemistry and Environmental Engineering, Yancheng Teachers University Yancheng 224000 China +86 515 68665372 +86 515 68665372
| | - Yuzhen Sun
- Institute of New Energy on Chemical Storage and Power Sources, College of Applied Chemistry and Environmental Engineering, Yancheng Teachers University Yancheng 224000 China +86 515 68665372 +86 515 68665372
| | - Xiaowei Yang
- Institute of New Energy on Chemical Storage and Power Sources, College of Applied Chemistry and Environmental Engineering, Yancheng Teachers University Yancheng 224000 China +86 515 68665372 +86 515 68665372
| | - Jian Wang
- Institute of New Energy on Chemical Storage and Power Sources, College of Applied Chemistry and Environmental Engineering, Yancheng Teachers University Yancheng 224000 China +86 515 68665372 +86 515 68665372.,College of Chemistry and Chemical Engineering, Nanjing Tech University Nanjing 210009 China
| | - Hao Shen
- College of Chemistry and Chemical Engineering, Nanjing Tech University Nanjing 210009 China
| | - Ye Jin
- College of Chemistry and Chemical Engineering, Nanjing Tech University Nanjing 210009 China
| |
Collapse
|