1
|
Dedieu P, Morand G, Loubière K, Ognier S, Tatoulian M. Microreactor designed for efficient plasma-liquid segmented flows. LAB ON A CHIP 2024; 24:3898-3908. [PMID: 38984493 DOI: 10.1039/d4lc00315b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Microreactors were designed for gas-liquid plasma chemical processes and operated under segmented flows in a high aspect ratio (8.76) rectangular microchannel. First, the hydrodynamics of the gas-liquid flows generated at a T-junction was investigated for fifteen solvents commonly used in organic synthesis. The classical literature scaling laws were revised to describe the dependence of bubble and slug lengths, and bubble residence time on the liquid nature by introducing their liquid vapour pressure. Liquid film thickness and liquid residence time were estimated from residence time distribution experiments. Secondly, plasma could be successfully generated in these segmented flows for all the liquids. Due to the plasma dissipation of thermal energy, gas phase temperature increased and induced the lengthening of bubbles and the decrease in bubble residence time. The flow pattern was also impacted by the gas temperature increase. A flow map describing the evolution of the flow pattern under plasma conditions was built, enabling prediction of the flow pattern based on the liquid boiling point and dielectric constant. These microreactors have demonstrated great potential, and by adapting the synthesis solvent or the operating plasma conditions, they could find promising applications in gas-liquid plasma chemical processes.
Collapse
Affiliation(s)
- Pierre Dedieu
- Institut de Recherche de Chimie Paris, UMR 8247, 2PM Group, Chimie ParisTech-PSL, PSL Université Paris, CNRS, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Gabriel Morand
- Institut de Recherche de Chimie Paris, UMR 8247, 2PM Group, Chimie ParisTech-PSL, PSL Université Paris, CNRS, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Karine Loubière
- Laboratoire de Génie Chimique, UMR 5503, Université de Toulouse, INPT, UPS, 4 Allée Emile Monso, Toulouse, France
| | - Stéphanie Ognier
- Institut de Recherche de Chimie Paris, UMR 8247, 2PM group, Sorbonne Université, 11 rue Pierre et Marie Curie, 75005 Paris, France.
| | - Michael Tatoulian
- Institut de Recherche de Chimie Paris, UMR 8247, 2PM Group, Chimie ParisTech-PSL, PSL Université Paris, CNRS, 11 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
2
|
Nadumane SS, Biswas R, Mazumder N. Integrated microfluidic platforms for heavy metal sensing: a comprehensive review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2810-2823. [PMID: 38656324 DOI: 10.1039/d4ay00293h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Heavy metals are found naturally; however, anthropogenic activities such as mining, inappropriate disposal of industrial waste, and the use of pesticides and fertilizers containing heavy metals can cause their unwanted release into the environment. Conventionally, detection of heavy metals is performed using atomic absorption spectrometry, electrochemical methods and inductively coupled plasma-mass spectrometry; however, they involve expensive and sophisticated instruments and multistep sample preparation that require expertise for accurate results. In contrast, microfluidic devices involve rapid, cost-efficient, simple, and reliable approaches for in-laboratory and real-time monitoring of heavy metals. The use of inexpensive and environment friendly materials for fabrication of microfluidic devices has increased the manufacturing efficiency of the devices. Different types of techniques used in heavy metal detection include colorimetry, absorbance-based, and electrochemical detection. This review provides insight into the detection of toxic heavy metals such as mercury (Hg), cadmium (Cd), lead (Pb), and arsenic (As). Importance is given to colorimetry, optical, and electrochemical techniques applied for the detection of heavy metals using microfluidics and their modifications to improve the limit of detection (LOD).
Collapse
Affiliation(s)
- Sharmila Sajankila Nadumane
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India-576104
| | - Rajib Biswas
- Applied Optics and Photonics Laboratory, Department of Physics, Tezpur University, Tezpur, Assam, India -784028
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India-576104
| |
Collapse
|
3
|
Jurina T, Sokač Cvetnić T, Šalić A, Benković M, Valinger D, Gajdoš Kljusurić J, Zelić B, Jurinjak Tušek A. Application of Spectroscopy Techniques for Monitoring (Bio)Catalytic Processes in Continuously Operated Microreactor Systems. Catalysts 2023. [DOI: 10.3390/catal13040690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
In the last twenty years, the application of microreactors in chemical and biochemical industrial processes has increased significantly. The use of microreactor systems ensures efficient process intensification due to the excellent heat and mass transfer within the microchannels. Monitoring the concentrations in the microchannels is critical for a better understanding of the physical and chemical processes occurring in micromixers and microreactors. Therefore, there is a growing interest in performing in-line and on-line analyses of chemical and/or biochemical processes. This creates tremendous opportunities for the incorporation of spectroscopic detection techniques into production and processing lines in various industries. In this work, an overview of current applications of ultraviolet–visible, infrared, Raman spectroscopy, NMR, MALDI-TOF-MS, and ESI-MS for monitoring (bio)catalytic processes in continuously operated microreactor systems is presented. The manuscript includes a description of the advantages and disadvantages of the analytical methods listed, with particular emphasis on the chemometric methods used for spectroscopic data analysis.
Collapse
Affiliation(s)
- Tamara Jurina
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, 10 000 Zagreb, Croatia
| | - Tea Sokač Cvetnić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, 10 000 Zagreb, Croatia
| | - Anita Šalić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10 000 Zagreb, Croatia
| | - Maja Benković
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, 10 000 Zagreb, Croatia
| | - Davor Valinger
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, 10 000 Zagreb, Croatia
| | - Jasenka Gajdoš Kljusurić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, 10 000 Zagreb, Croatia
| | - Bruno Zelić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10 000 Zagreb, Croatia
- Department for Packaging, Recycling and Environmental Protection, University North, Trg dr. Žarka Dolinara 1, 48 000 Koprivnica, Croatia
| | - Ana Jurinjak Tušek
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, 10 000 Zagreb, Croatia
| |
Collapse
|
4
|
Niculescu AG, Mihaiescu DE, Grumezescu AM. A Review of Microfluidic Experimental Designs for Nanoparticle Synthesis. Int J Mol Sci 2022; 23:8293. [PMID: 35955420 PMCID: PMC9368202 DOI: 10.3390/ijms23158293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Microfluidics is defined as emerging science and technology based on precisely manipulating fluids through miniaturized devices with micro-scale channels and chambers. Such microfluidic systems can be used for numerous applications, including reactions, separations, or detection of various compounds. Therefore, due to their potential as microreactors, a particular research focus was noted in exploring various microchannel configurations for on-chip chemical syntheses of materials with tailored properties. Given the significant number of studies in the field, this paper aims to review the recently developed microfluidic devices based on their geometry particularities, starting from a brief presentation of nanoparticle synthesis and mixing within microchannels, further moving to a more detailed discussion of different chip configurations with potential use in nanomaterial fabrication.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| |
Collapse
|
5
|
Trends in sensor development toward next-generation point-of-care testing for mercury. Biosens Bioelectron 2021; 183:113228. [PMID: 33862396 DOI: 10.1016/j.bios.2021.113228] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 01/01/2023]
Abstract
Mercury is one of the most common heavy metals and a major environmental pollutant that affects ecosystems. Since mercury and its compounds are toxic to humans, even at low concentrations, it is very important to monitor mercury contamination in water and foods. Although conventional mercury detection methods, including inductively coupled plasma mass spectrometry, atomic absorption spectroscopy, and gas chromatography-mass spectrometry, exhibit excellent sensitivity and accuracy, they require operation by an expert in a sophisticated and fully controlled laboratory environment. To overcome these limitations and realize point-of-care testing, many novel methods for direct sample analysis in the field have recently been developed by improving the speed and simplicity of detection. Commonly, these unconventional sensors rely on colorimetric, fluorescence, or electrochemical mechanisms to transduce signals from mercury. In the case of colorimetric and fluorescent sensors, benchtop methods have gradually evolved through technology convergence to give standalone platforms, such as paper-based assays and lab-on-a-chip systems, and portable measurement devices, such as smartphones. Electrochemical sensors that use screen-printed electrodes with carbon or metal nanomaterials or hybrid materials to improve sensitivity and stability also provide promising detection platforms. This review summarizes the current state of sensor platforms for the on-field detection of mercury with a focus on key features and recent developments. Furthermore, trends for next-generation mercury sensors are suggested based on a paradigm shift to the active integration of cutting-edge technologies, such as drones, systems based on artificial intelligence, machine learning, and three-dimensional printing, and high-quality smartphones.
Collapse
|
6
|
Abstract
Heavy metal pollution of water has become a global issue and is especially problematic in some developing countries. Heavy metals are toxic to living organisms, even at very low concentrations. Therefore, effective and reliable heavy metal detection in environmental water is very important. Current laboratory-based methods used for analysis of heavy metals in water require sophisticated instrumentation and highly trained technicians, making them unsuitable for routine heavy metal monitoring in the environment. Consequently, there is a growing demand for autonomous detection systems that could perform in situ or point-of-use measurements. Microfluidic detection systems, which are defined by their small size, have many characteristics that make them suitable for environmental analysis. Some of these advantages include portability, high sample throughput, reduced reagent consumption and waste generation, and reduced production cost. This review focusses on developments in the application of microfluidic detection systems to heavy metal detection in water. Microfluidic detection strategies based on optical techniques, electrochemical techniques, and quartz crystal microbalance are discussed.
Collapse
|
7
|
Kulkarni MB, Goel S. Microfluidic devices for synthesizing nanomaterials—a review. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/abcca6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Droplet-based Synthesis of Homogeneous Gold Nanoparticles for Enhancing HRP-based ELISA Signals. BIOCHIP JOURNAL 2020. [DOI: 10.1007/s13206-020-4307-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Zhao X, Bian F, Sun L, Cai L, Li L, Zhao Y. Microfluidic Generation of Nanomaterials for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1901943. [PMID: 31259464 DOI: 10.1002/smll.201901943] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/09/2019] [Indexed: 05/23/2023]
Abstract
As nanomaterials (NMs) possess attractive physicochemical properties that are strongly related to their specific sizes and morphologies, they are becoming one of the most desirable components in the fields of drug delivery, biosensing, bioimaging, and tissue engineering. By choosing an appropriate methodology that allows for accurate control over the reaction conditions, not only can NMs with high quality and rapid production rate be generated, but also designing composite and efficient products for therapy and diagnosis in nanomedicine can be realized. Recent evidence implies that microfluidic technology offers a promising platform for the synthesis of NMs by easy manipulation of fluids in microscale channels. In this Review, a comprehensive set of developments in the field of microfluidics for generating two main classes of NMs, including nanoparticles and nanofibers, and their various potentials in biomedical applications are summarized. Furthermore, the major challenges in this area and opinions on its future developments are proposed.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, P. R. China
| | - Feika Bian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Lingyu Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Yuanjin Zhao
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
10
|
Lin CH, Ju SP, Su JW, Li DE. Peptide Capping Agent Design for Gold (111) Facet by Molecular Simulation and Experimental Approaches. Sci Rep 2020; 10:2090. [PMID: 32034260 PMCID: PMC7005706 DOI: 10.1038/s41598-020-59144-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 01/23/2020] [Indexed: 11/21/2022] Open
Abstract
The stochastic tunneling-basin hopping method (STUN-BH) was utilized to obtain the most stable peptide S7 configuration (Ac-Ser-Ser-Phe-Pro-Gln-Pro-Asn-CONH2) adsorbed on Au(111) facet. After the most stable S7 configuration was found, molecular dynamics (MD) simulation was conducted to investigate the thermal stability between S7 and Au facet at 300 K in both vacuum and water environment. Moreover, further design sets of peptide sequences on Au(111) facet were used to compare with S7. All molecular simulations were carried out by the large-scale atomic/molecular massively parallel simulator (LAMMPS). The Amber99sb-ILDN force field was employed for modeling the interatomic interaction of peptides, and the TIP3P water was used for the water environment. The CHARMM-METAL force field was introduced to model the S7, PF8 (Ac-Pro-Phe-Ser-Pro-Phe-Ser-Pro-Phe-CONH2) and FS8 (Ac-Phe-Ser-Phe-Ser-Phe-Ser-Phe-Ser-CONH2) interactions with Au(111). The MD simulation results demonstrate that the morphology of Pro affects the adsorption stability of Phe. Therefore, we designed two sequences, PF8 and FS8, to confirm our simulation result through experiment. The present study also develops a novel low-temperature plasma synthesis method to evaluate the facet selecting performance of the designed peptide sequences of S7, PF8, and FS8. The experimental results suggest that the reduced Au atom seed is captured with the designed peptide sequences and slowing growing under room temperature for 72 hours. The experimental results are in the excellent agreement with the simulation finding that the Pro in the designed peptide sequences plays a critical role in the facet selection for Au atom stacking.
Collapse
Affiliation(s)
- Che-Hsin Lin
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Shin-Pon Ju
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| | - Jia-Wei Su
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Dai-En Li
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| |
Collapse
|
11
|
|