1
|
Ho KH, Lu X, Lau SK. In Situ Dispersion of Lignin in Polypropylene via Supercritical CO 2 Extrusion Foaming: Effects of Lignin on Cell Nucleation and Foam Compression Properties. Polymers (Basel) 2023; 15:polym15081813. [PMID: 37111960 PMCID: PMC10145137 DOI: 10.3390/polym15081813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Supercritical CO2 (scCO2) extrusion foamed high-melt-strength (HMS) polypropylene (PP) often suffers from low cell density, large cell sizes, and poor cell structure uniformity due to the poor nucleation rates of CO2 in the PP. To remedy this, various inorganic fillers have been used as heterogeneous nucleation agents. Although their efficient nucleation effects have been demonstrated, the preparation of these fillers causes some adverse effects on the environment/human health or involves relatively expensive processes or non-eco-friendly chemicals. In this work, biomass-based lignin is studied as a sustainable, lightweight, and cost-effective nucleating agent. It is found that scCO2 could assist in situ dispersion of lignin in the PP in the foaming process, leading to significantly increased cell density, smaller cells, and improved cell uniformity. The Expansion Ratio is also simultaneously improved due to reduced diffusive gas loss. The PP/lignin foams with low lignin loadings exhibit higher compression moduli and plateau strengths than the PP foams with the same densities owing to the improved cell uniformity and probably also the reinforcing effect of the small lignin particles in cell walls. Moreover, the energy absorption capability of the PP/lignin foam with 1 wt% lignin could match the PP foam with similar compression plateau strengths; even the density of the former is 28% lower than the latter. Therefore, this work provides a promising approach to a cleaner and more sustainable production of HMS PP foams.
Collapse
Affiliation(s)
- Keen Hoe Ho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research, 5 CleanTech Loop #01-01, CleanTech Two Block B, Singapore 636732, Singapore
| | - Xuehong Lu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Soo Khim Lau
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research, 5 CleanTech Loop #01-01, CleanTech Two Block B, Singapore 636732, Singapore
| |
Collapse
|
2
|
Visual observation and Numerical Studies of bubble formation of polypropylene chemical foaming system in the different injection foaming environment. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
3
|
Yuan W, Wang F, Gao C, Liu P, Ding Y, Zhang S, Yang M. Effect of silica‐coated
TiO
2
nanorods on the foamability of polypropylene and photostability of foamed polypropylene. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wenjing Yuan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics Institute of Chemistry, Chinese Academy of Sciences Beijing China
- Laboratory for Synthetic Resin Research Institute of Petrochemical Technology, China National Petroleum Corporation Beijing China
| | - Feng Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics Institute of Chemistry, Chinese Academy of Sciences Beijing China
| | - Chong Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics Institute of Chemistry, Chinese Academy of Sciences Beijing China
| | - Peng Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics Institute of Chemistry, Chinese Academy of Sciences Beijing China
| | - Yanfen Ding
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics Institute of Chemistry, Chinese Academy of Sciences Beijing China
| | - Shimin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics Institute of Chemistry, Chinese Academy of Sciences Beijing China
| | - Mingshu Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics Institute of Chemistry, Chinese Academy of Sciences Beijing China
| |
Collapse
|
4
|
Yang C, Yan K, Wen X, Cai P, Wu G. Radiation Grafting Assisted Preparation of Layered Structure Polypropylene Foam with Superthermal Insulation and Hydrophobic Properties via a Supercritical CO 2 Batch Foaming Process. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chenguang Yang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Kun Yan
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Xin Wen
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Peijun Cai
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Guozhong Wu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
5
|
Yang C, Zhang Q, Zhang W, Xia M, Yan K, Lu J, Wu G. High thermal insulation and compressive strength polypropylene microcellular foams with honeycomb structure. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2020.109406] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Varghese A, Rangaraj VM, Luckachan G, Mittal V. UV Aging Behavior of Functionalized Mullite Nanofiber-Reinforced Polypropylene. ACS OMEGA 2020; 5:27083-27093. [PMID: 33134668 PMCID: PMC7594012 DOI: 10.1021/acsomega.0c02437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
In this study, the effect of accelerated ultraviolet (UV) aging on the properties of polypropylene (PP) as well as its blend with PP-graft-maleic anhydride (PP-g-MA) and composite with amine-functionalized mullite nanofibers (AMNF) was compared. Solid-state NMR exhibited some changes in the macromolecular chain structure after aging, whereas the formation of degradation products was confirmed through Fourier transform infrared (FTIR) spectroscopy. The aged composite was observed to exhibit the least increment in the crystallinity from X-ray and differential scanning calorimetry (DSC) analyses (0.3 and 0.5%, compared to 9.7 and 10.4%, respectively, for PP) owing to the stability of its amorphous phase against degradation. Similar resistance toward degradation was also confirmed by thermogravimetric analysis (TGA). The surface morphology of the materials also exhibited the lowest extent of surface embrittlement as well as a small number of shallow cracks in the case of a-PP/PP-g-MA/AMNF composite. The aged composite had a much higher impact strength of 14.9 kJ m-2 compared to 2.5 kJ m-2 for aged PP, thus exhibiting its stability against degradation owing to a synergistic combination of the filler and compatibilizer. The optimal performance of the composite was further confirmed through the least extent of reduction in the tensile strength and elongation at break. These findings demonstrate the superior performance of AMNF-reinforced PP composite over PP for outdoor applications.
Collapse
Affiliation(s)
- Anish
M. Varghese
- Department of Chemical Engineering, Khalifa University, Sas Al Nakhl Campus, Abu
Dhabi, UAE
| | - Vengatesan M. Rangaraj
- Department of Chemical Engineering, Khalifa University, Sas Al Nakhl Campus, Abu
Dhabi, UAE
| | - Gisha Luckachan
- Department of Chemical Engineering, Khalifa University, Sas Al Nakhl Campus, Abu
Dhabi, UAE
| | - Vikas Mittal
- Department of Chemical Engineering, Khalifa University, Sas Al Nakhl Campus, Abu
Dhabi, UAE
| |
Collapse
|
7
|
Suethao S, Shah DU, Smitthipong W. Recent Progress in Processing Functionally Graded Polymer Foams. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4060. [PMID: 32933128 PMCID: PMC7560401 DOI: 10.3390/ma13184060] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 01/08/2023]
Abstract
Polymer foams are an important class of engineering material that are finding diverse applications, including as structural parts in automotive industry, insulation in construction, core materials for sandwich composites, and cushioning in mattresses. The vast majority of these manufactured foams are homogeneous with respect to porosity and structural properties. In contrast, while cellular materials are also ubiquitous in nature, nature mostly fabricates heterogeneous foams, e.g., cellulosic plant stems like bamboo, or a human femur bone. Foams with such engineered porosity distribution (graded density structure) have useful property gradients and are referred to as functionally graded foams. Functionally graded polymer foams are one of the key emerging innovations in polymer foam technology. They allow enhancement in properties such as energy absorption, more efficient use of material, and better design for specific applications, such as helmets and tissue restorative scaffolds. Here, following an overview of key processing parameters for polymer foams, we explore recent developments in processing functionally graded polymer foams and their emerging structures and properties. Processes can be as simple as utilizing different surface materials from which the foam forms, to as complex as using microfluidics. We also highlight principal challenges that need addressing in future research, the key one being development of viable generic processes that allow (complete) control and tailoring of porosity distribution on an application-by-application basis.
Collapse
Affiliation(s)
- Supitta Suethao
- Specialized Center of Rubber and Polymer Materials in Agriculture and Industry (RPM), Department of Materials Science, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand;
| | - Darshil U. Shah
- Centre for Natural Material Innovation, Department of Architecture, University of Cambridge, Cambridge CB2 1PX, UK;
| | - Wirasak Smitthipong
- Specialized Center of Rubber and Polymer Materials in Agriculture and Industry (RPM), Department of Materials Science, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand;
- Office of Natural Rubber Research Program, Thailand Science Research and Innovation (TSRI), Chatuchak, Bangkok 10900, Thailand
- Office of Research Integration on Target–Based Natural Rubber, National Research Council of Thailand (NRCT), Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
8
|
Sarve A, George J, Agrawal S, Jasra RV, Munshi P. Unidirectional growth of organic single crystals of naphthalene, anthracene and pyrene by isothermal expansion of supercritical CO 2. RSC Adv 2020; 10:22480-22486. [PMID: 35514597 PMCID: PMC9054696 DOI: 10.1039/d0ra03706k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 05/22/2020] [Indexed: 11/24/2022] Open
Abstract
Unidirectional single crystals without grain boundaries are highly important in optoelectronic applications. Conventional methods to obtain such crystals involve organic solvents or seed crystals, which have numerous drawbacks. We present here a supercritical CO2-mediated method of the single crystal formation of naphthalene, anthracene and pyrene on the (001) plane without using seed crystals. Single dominant peaks in powder XRD (PXRD) with low full width at half maxima (FWHM) are described. The dependency of crystal size on the rate of depressurization was measured by precise and isothermal expansion of scCO2 solutions. The experimental setup is illustrated for continuous preparation without emission of CO2 or discharge of material into the environment. The materials are shown to be fully converted into crystals indicating a rapid, scalable and environmentally benign process of single crystal formation with practically nil E factor. Slow isothermal expansion of a supercritical CO2 solution resulting in unidirectional single crystals of controllable size as a method of crystallization with practically nil E factor.![]()
Collapse
Affiliation(s)
- Antaram Sarve
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology Surat 395007 India
| | - Jimil George
- Department of Chemistry, Cochin University of Science and Technology Cochin Kerala 682022 India
| | - Santosh Agrawal
- Research Centre, Reliance Technology Group, Reliance Industries Limited Vadodara Gujarat 391346 India
| | - Raksh Vir Jasra
- Research Centre, Reliance Technology Group, Reliance Industries Limited Vadodara Gujarat 391346 India
| | - Pradip Munshi
- Research Centre, Reliance Technology Group, Reliance Industries Limited Vadodara Gujarat 391346 India
| |
Collapse
|
9
|
Yuan W, Wang F, Gao C, Liu P, Ding Y, Zhang S, Yang M. Enhanced foamability of isotactic polypropylene/polypropylene‐grafted‐nanosilica nanocomposites in supercritical carbon dioxide. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wenjing Yuan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering PlasticsInstitute of Chemistry, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Feng Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering PlasticsInstitute of Chemistry, Chinese Academy of Sciences Beijing China
| | - Chong Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering PlasticsInstitute of Chemistry, Chinese Academy of Sciences Beijing China
| | - Peng Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering PlasticsInstitute of Chemistry, Chinese Academy of Sciences Beijing China
| | - Yanfen Ding
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering PlasticsInstitute of Chemistry, Chinese Academy of Sciences Beijing China
| | - Shimin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering PlasticsInstitute of Chemistry, Chinese Academy of Sciences Beijing China
| | - Mingshu Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering PlasticsInstitute of Chemistry, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
10
|
Qiu J, Wang Y, Xing H, Li M, Liu J, Wang J, Tang T. Preparation of Polypropylene Foams with Bimodal Cell Structure Using a Microporous Molecular Sieve as a Nucleating Agent. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jian Qiu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanliang Wang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Haiping Xing
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Minggang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jie Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jun Wang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Tao Tang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
11
|
|
12
|
Yang C, Zhao Q, Xing Z, Zhang W, Zhang M, Tan H, Wang J, Wu G. Improving the Supercritical CO₂ Foaming of Polypropylene by the Addition of Fluoroelastomer as a Nucleation Agent. Polymers (Basel) 2019; 11:E226. [PMID: 30960210 PMCID: PMC6419069 DOI: 10.3390/polym11020226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/27/2018] [Accepted: 01/02/2019] [Indexed: 11/16/2022] Open
Abstract
In this study, a small amount of fluoroelastomer (FKM) was used as a nucleating agent to prepare well-defined microporous PP foam by supercritical CO₂. It was observed that solid FKM was present as the nanoscale independent phase in PP matrix and the FKM could induce a mass of CO₂ aggregation, which significantly enhanced the diffusion rate of CO₂ in PP. The resultant PP/FKM foams exhibited much smaller cell size (~24 μm), and more than 16 times cell density (3.2 × 10⁸ cells/cm³) as well as a much more uniform cell size distribution. PP/FKM foams possessed major concurrent enhancement in their tensile stress and compressive stress compared to neat PP foam. We believe that the added FKM played a key role in enhancing the heterogeneous nucleation, combined with the change of local strain in the multiple-phase system, which was responsible for the considerably improved cell morphology of PP foaming. This work provides a deep understanding of the scCO₂ foaming behavior of PP in the presence of FKM.
Collapse
Affiliation(s)
- Chenguang Yang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Jialuo Road 2019, Jiading, Shanghai 201800, China.
- University of China Academy of Sciences, Beijing 100049, China.
- School of Physical Science and Technology, ShanghaiTech University, Haike Road 100, Pudong, Shanghai 201210, China.
| | - Quan Zhao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Jialuo Road 2019, Jiading, Shanghai 201800, China.
| | - Zhe Xing
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Jialuo Road 2019, Jiading, Shanghai 201800, China.
| | - Wenli Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Jialuo Road 2019, Jiading, Shanghai 201800, China.
- University of China Academy of Sciences, Beijing 100049, China.
| | - Maojiang Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Jialuo Road 2019, Jiading, Shanghai 201800, China.
- School of Physical Science and Technology, ShanghaiTech University, Haike Road 100, Pudong, Shanghai 201210, China.
| | - Hairong Tan
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Jialuo Road 2019, Jiading, Shanghai 201800, China.
- School of Physical Science and Technology, ShanghaiTech University, Haike Road 100, Pudong, Shanghai 201210, China.
| | - Jixiang Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Jialuo Road 2019, Jiading, Shanghai 201800, China.
| | - Guozhong Wu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Jialuo Road 2019, Jiading, Shanghai 201800, China.
- School of Physical Science and Technology, ShanghaiTech University, Haike Road 100, Pudong, Shanghai 201210, China.
| |
Collapse
|
13
|
Yang C, Xing Z, Wang M, Zhao Q, Wang M, Zhang M, Wu G. Better scCO 2 Foaming of Polypropylene via Earlier Crystallization with the Addition of Composite Nucleating Agent. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03866] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chenguang Yang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Jialuo Road 2019, Jiading, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Zhe Xing
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Jialuo Road 2019, Jiading, Shanghai 201800, China
| | - Mouhua Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Jialuo Road 2019, Jiading, Shanghai 201800, China
| | - Quan Zhao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Jialuo Road 2019, Jiading, Shanghai 201800, China
| | - Minglei Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Jialuo Road 2019, Jiading, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maojiang Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Jialuo Road 2019, Jiading, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Guozhong Wu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Jialuo Road 2019, Jiading, Shanghai 201800, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
| |
Collapse
|