1
|
Pittermannová A, Ruberová Z, Lizoňová D, Hubatová-Vacková A, Kašpar O, ZadraŽil A, Král V, Pechar M, Pola R, Bibette J, Bremond N, Štěpánek F, Tokárová V. Functionalized hydrogel microparticles prepared by microfluidics and their interaction with tumour marker carbonic anhydrase IX. SOFT MATTER 2020; 16:8702-8709. [PMID: 32996550 DOI: 10.1039/d0sm01018a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microfluidics allows precise control of the synthesis of microparticles for specific applications, where size and morphology play an important role. In this work, we have introduced microfluidic chip design with dedicated extraction and gelation sections allowing to prepare hydrogel particles in the size range of a red blood cell. The influence of the extractive channel size, alginate concentration and type of storage media on the final size of the prepared alginate microparticles has been discussed. The second part of the work is dedicated to the surface modification of prepared particles using chitosan, pHPMA and the monoclonal antibody molecule, IgG M75. The specific interaction of the antibody molecule with an antigen domain of carbonic anhydrase IX, the transmembrane tumour protein associated with several types of cancer, is demonstrated by fluorescence imaging and compared to an isotypic antibody molecule.
Collapse
Affiliation(s)
- A Pittermannová
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 3, 166 28 Prague 6, Czech Republic. and Laboratory Colloids and Divided Matter - Chemistry, Biology and Innovation (CBI) UMR8231, ESPCI Paris, CNRS, PSL Research University, 10 rue Vauquelin, Paris, France
| | - Z Ruberová
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 3, 166 28 Prague 6, Czech Republic.
| | - D Lizoňová
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 3, 166 28 Prague 6, Czech Republic.
| | - A Hubatová-Vacková
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 3, 166 28 Prague 6, Czech Republic.
| | - O Kašpar
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 3, 166 28 Prague 6, Czech Republic.
| | - A ZadraŽil
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 3, 166 28 Prague 6, Czech Republic.
| | - V Král
- Laboratory of Structural Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - M Pechar
- Laboratory of Biomedical Polymers, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Nám. 2, 162 06 Prague 6, Czech Republic
| | - R Pola
- Laboratory of Biomedical Polymers, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Nám. 2, 162 06 Prague 6, Czech Republic
| | - J Bibette
- Laboratory Colloids and Divided Matter - Chemistry, Biology and Innovation (CBI) UMR8231, ESPCI Paris, CNRS, PSL Research University, 10 rue Vauquelin, Paris, France
| | - N Bremond
- Laboratory Colloids and Divided Matter - Chemistry, Biology and Innovation (CBI) UMR8231, ESPCI Paris, CNRS, PSL Research University, 10 rue Vauquelin, Paris, France
| | - F Štěpánek
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 3, 166 28 Prague 6, Czech Republic.
| | - V Tokárová
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 3, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
2
|
Randárová E, Kudláčová J, Etrych T. HPMA copolymer-antibody constructs in neoplastic treatment: an overview of therapeutics, targeted diagnostics, and drug-free systems. J Control Release 2020; 325:304-322. [DOI: 10.1016/j.jconrel.2020.06.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 12/27/2022]
|
3
|
Janoniene A, Petrikaite V. In Search of Advanced Tumor Diagnostics and Treatment: Achievements and Perspectives of Carbonic Anhydrase IX Targeted Delivery. Mol Pharm 2020; 17:1800-1815. [PMID: 32374612 DOI: 10.1021/acs.molpharmaceut.0c00180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The research of how cells sense and adapt the oxygen deficiency has been recognized as worth winning a Nobel Prize in 2019. Understanding hypoxia-driven molecular machinery paved a path for novel strategies in fighting hypoxia-related diseases including cancer. The oxygen depletion inside the tumor provokes HIF-1 dependent gene and protein expression which helps the tumor to survive. For this reason, tumor related molecules are in the spotlight for scientists developing anticancer agents. One such target is carbonic anhydrase IX (CA IX)-a protein located on the outer cell membrane of most hypoxic tumor cells. This offers the opportunity to exploit it as a target for delivery of cytotoxic drugs, dyes, or radioisotopes to cancer cells. Therefore, researchers investigate CA IX specific small molecules and antibodies as tumor-targeting moieties in nanosystems and conjugates which are expected to overcome the limitations of some existing diagnostic and treatment strategies. This review covers the vast majority of CA IX-targeted systems (nanoparticle and conjugate based) for both therapeutic and imaging purposes published up to now. Furthermore, it shows their stage of development and gives an assessment of their clinical translation possibilities.
Collapse
Affiliation(s)
- Agne Janoniene
- Vilnius University Life Science Center, Institute of Biotechnology, LT-10257 Vilnius, Lithuania
| | - Vilma Petrikaite
- Vilnius University Life Science Center, Institute of Biotechnology, LT-10257 Vilnius, Lithuania.,Lithuanian University of Health Sciences, Institute of Cardiology, LT-50162 Kaunas, Lithuania
| |
Collapse
|