1
|
Hamzei A, Hajiabadi H, Rad MT. Wettability of net C, net W and net Y: a molecular dynamics simulation study. RSC Adv 2023; 13:2318-2328. [PMID: 36741166 PMCID: PMC9841580 DOI: 10.1039/d2ra07811b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
The experimental synthesis of biphenylene, a two-dimensional carbon allotrope, theoretically predicted in 1997, took place in 2021. Biphenylene is also called net C. Two close relatives of this structure, known as net W and net Y, have not yet been experimentally synthesized. In this article, the wettability properties of these three carbon allotropes are investigated, using molecular dynamics simulation. The electronic and mechanical properties of these allotropes have been extensively studied, but their wettability properties are unknown. The chemical structure of the three allotropes is similar and contain four, six, and eight carbon membered rings. The results of molecular dynamics calculations with reactive potential show that net C, net W and net Y are hydrophobic substrates with contact angles of 122.3° ± 1.3°, 126.2° ± 1.3° and 127.8° ± 1.2°, respectively. The droplets on the above-mentioned substrates have a completely layered structure. That is, the water molecules inside the droplet are completely placed in certain layers. Calculating the order parameter for water molecules shows that the degree of water molecules' tetrahedrality on all three substrates is exactly the same. In terms of hydrogen bonding at the interface, the three substrates act identically and show almost the same effect. The droplet displacement is the highest on net W and the lowest on net Y. Furthermore, the van der Waals potential on all three substrates has been scanned. It is demonstrated that the amount of droplet displacement on the surface is inversely related to the surface density of the potential peaks.
Collapse
Affiliation(s)
- Amin Hamzei
- Kerman Graduate University of TechnologyKermanIran
| | - Hossein Hajiabadi
- Department of Physical Chemistry, School of Chemistry, College of Science, University of TehranTehranIran
| | - Morteza Torabi Rad
- Department of Physical Chemistry, School of Chemistry, College of Science, University of TehranTehranIran
| |
Collapse
|
3
|
Zhang J, Jia K, Huang Y, Liu X, Xu Q, Wang W, Zhang R, Liu B, Zheng L, Chen H, Gao P, Meng S, Lin L, Peng H, Liu Z. Intrinsic Wettability in Pristine Graphene. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103620. [PMID: 34808008 DOI: 10.1002/adma.202103620] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/16/2021] [Indexed: 06/13/2023]
Abstract
The wettability of graphene remains controversial owing to its high sensitivity to the surroundings, which is reflected by the wide range of reported water contact angle (WCA). Specifically, the surface contamination and underlying substrate would strongly alter the intrinsic wettability of graphene. Here, the intrinsic wettability of graphene is investigated by measuring WCA on suspended, superclean graphene membrane using environmental scanning electron microscope. An extremely low WCA with an average value ≈30° is observed, confirming the hydrophilic nature of pristine graphene. This high hydrophilicity originates from the charge transfer between graphene and water molecules through H-π interaction. The work provides a deep understanding of the water-graphene interaction and opens up a new way for measuring the surface properties of 2D materials.
Collapse
Affiliation(s)
- Jincan Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Kaicheng Jia
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Yongfeng Huang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiaoting Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Qiuhao Xu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wendong Wang
- Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK
| | - Rui Zhang
- Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK
| | - Bingyao Liu
- Beijing Graphene Institute, Beijing, 100095, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, P. R. China
| | - Liming Zheng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Heng Chen
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Peng Gao
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, P. R. China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100871, P. R. China
| | - Sheng Meng
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li Lin
- Materials Science and Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Hailin Peng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Zhongfan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| |
Collapse
|
4
|
Paniagua-Guerra LE, Gonzalez-Valle CU, Ramos-Alvarado B. Effects of the Interfacial Modeling Approach on Equilibrium Calculations of Slip Length for Nanoconfined Water in Carbon Slits. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14772-14781. [PMID: 33215929 DOI: 10.1021/acs.langmuir.0c02718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this investigation, equilibrium molecular dynamics simulations were conducted to assess the influence of the interface modeling approach on the calculation of hydrodynamic slip in carbon nanochannels. A Green-Kubo formalism was implemented for the calculation of the slip length in water confined by graphite layers. The nonbonded interactions between solid and liquid atoms (interface models) were modeled using parameters optimized to represent the wetting behavior and adsorption energy curves from electronic structure calculations. Conventional carbon-oxygen-only interaction models were compared against comprehensive models able to represent the molecular-orientation-dependent energy of interaction. Quasi-universal relationships built under the premise of the slip length dependence on the water-graphite affinity and characterized by macroscopic wettability were critically assessed. It was found that the wetting behavior cannot fully characterize the hydrodynamic slip because interface models that produced the same surface wettability yielded different values of the friction coefficient. Alternatively, the density depletion length, used to characterize the interfacial liquid structuring and the availability of momentum carriers (interfacial water molecules), was able to accurately represent the slip length trends independently of the interface model. These findings reassert the importance of physically sound interface models to study interfacial transport properties and the need of reliable parameters and characterization procedures to support theoretical models that seek to unveil the inconsistencies in hydrodynamic slip calculations.
Collapse
Affiliation(s)
- Luis E Paniagua-Guerra
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - C Ulises Gonzalez-Valle
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bladimir Ramos-Alvarado
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
6
|
Ojaghlou N, Bratko D, Salanne M, Shafiei M, Luzar A. Solvent-Solvent Correlations across Graphene: The Effect of Image Charges. ACS NANO 2020; 14:7987-7998. [PMID: 32491826 DOI: 10.1021/acsnano.9b09321] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Wetting experiments show pure graphene to be weakly hydrophilic, but its contact angle (CA) also reflects the character of the supporting material. Measurements and molecular dynamics simulations on suspended and supported graphene often reveal a CA reduction due to the presence of the supporting substrate. A similar reduction is consistently observed when graphene is wetted from both sides. The effect has been attributed to transparency to molecular interactions across the graphene sheet; however, the possibility of substrate-induced graphene polarization has also been considered. Computer simulations of CA on graphene have so far been determined by ignoring the material's conducting properties. We improve the graphene model by incorporating its conductivity according to the constant applied potential molecular dynamics. Using this method, we compare the wettabilities of suspended graphene and graphene supported by water by measuring the CA of cylindrical water drops on the sheets. The inclusion of graphene conductivity and concomitant polarization effects leads to a lower CA on suspended graphene, but the CA reduction is significantly bigger when the sheets are also wetted from the opposite side. The stronger adhesion is accompanied by a profound change in the correlations among water molecules across the sheet. While partial charges on water molecules interacting across an insulator sheet attract charges of the opposite sign, apparent attraction among like charges is manifested across the conducting graphene. The change is associated with graphene polarization, as the image charges inside the conductor attract equally signed partial charges of water molecules on both sides of the sheet. Additionally, using a nonpolar liquid (diiodomethane), we affirm a detectable wetting translucency when liquid-liquid forces are dominated by dispersive interactions. Our findings are important for predictive modeling toward a variety of applications including sensors, fuel cell membranes, water filtration, and graphene-based electrode materials in high-performance supercapacitors.
Collapse
Affiliation(s)
- Neda Ojaghlou
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Dusan Bratko
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Mathieu Salanne
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, Phenix, F-75005 Paris, France
| | - Mahdi Shafiei
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Alenka Luzar
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
8
|
Liu J, Pantelides ST. Electrowetting on 2D dielectrics: a quantum molecular dynamics investigation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:375001. [PMID: 30079895 DOI: 10.1088/1361-648x/aad838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Electrowetting on dielectrics (EWOD) is widely used to manipulate the spreading of a conductive liquid on a dielectric surface by applying an electric field. 2D hydrophobic dielectrics are promising candidates for EWOD applications. In this study, extensive quantum molecular dynamics (MD) simulations are performed to investigate the electrowetting behavior of salty water on hexagonal boron nitride (h-BN) monolayer. The proximal adsorption of salt ions and the associated realignment of the dipole moments of interfacial water with the applied electric field are found to be the physical origin of the electrowetting behavior. At low salt concentration and low electric fields, the proximal adsorption and the realignment follow the applied electric field, and the cosine of the water contact angle (WCA) follows a quadratic dependence on the applied electric field. At high salt concentration and high electric fields, the proximal adsorption saturates, which restricts further realignment and causes a saturation of the WCA. This case study provides physical insights into the much debated mechanism that underlies the contact angle saturation (CAS) found in macroscopic electrowetting phenomena and also provides an avenue for further studies of electrowetting at the atomic scale.
Collapse
Affiliation(s)
- Jian Liu
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, United States of America
| | | |
Collapse
|