1
|
Hajebi S, Chamanara M, Nasiri SS, Ghasri M, Mouraki A, Heidari R, Nourmohammadi A. Advances in stimuli-responsive gold nanorods for drug-delivery and targeted therapy systems. Biomed Pharmacother 2024; 180:117493. [PMID: 39353321 DOI: 10.1016/j.biopha.2024.117493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
In recent years, the use of gold nanorods (AuNRs) has garnered considerable attention in biomedical applications due to their unique optical and physicochemical properties. They have been considered as potential tools for the advanced treatment of diseases by various stimuli such as magnetic fields, pH, temperature and light in the fields of targeted therapy, imaging and drug delivery. Their biocompatibility and tunable plasmonic properties make them a versatile platform for a range of biomedical applications. While endogenous stimuli have limited cargo delivery control at specific sites, exogenous stimuli are a more favored approach despite their circumscribed penetration depth for releasing the cargo at the specific target. Dual/multi-stimuli responsive AuNTs can be triggered by multiple stimuli for enhanced control and specificity in biomedical applications. This review provides to provide a summary of the biomedical applications of stimuli-responsive AuNRs, including their endogenous and exogenous properties, as well as their dual/multi-functionality and potential for clinical delivery. This review provides a comprehensive review on the improvement of therapeutic efficacy and the effective control of drug release with AuNRs, highlights AuNRs design strategies in recent years, discusses the advantages or challenges so far in the field of AuNRs. Finally, we have addressed the clinical translation bio-integrated nanoassemblies (CTBNs) in this field.
Collapse
Affiliation(s)
- Sakineh Hajebi
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran; Biomaterial and Medicinal Chemistry Research Center, AJA University of Medical Science, Tehran, Iran
| | - Mohsen Chamanara
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran; Biomaterial and Medicinal Chemistry Research Center, AJA University of Medical Science, Tehran, Iran
| | - Shadi Sadat Nasiri
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Mahsa Ghasri
- Adhesive and Resin Department, Polymer Processing Faculty, Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran
| | - Alireza Mouraki
- Department of Surface Coating and Corrosion, Institute for Color Science and Technology, Tehran, Iran
| | - Reza Heidari
- Cancer Epidemiology Research Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran; Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran; Biomaterial and Medicinal Chemistry Research Center, AJA University of Medical Science, Tehran, Iran.
| | - Abbas Nourmohammadi
- Clinical Biomechanics and Ergonomics Research Center, AJA University of Medical Sciences, Tehran, Iran; Research Center of Aerospace Medicine, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Wang B, Xu XJ, Fu Y, Ren B, Yang XD, Yang HY. A tumor-targeted and enzyme-responsive gold nanorod-based nanoplatform with facilitated endo-lysosomal escape for synergetic photothermal therapy and protein therapy. Dalton Trans 2024; 53:2120-2130. [PMID: 38180436 DOI: 10.1039/d3dt03305h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
To tackle the obstacles related to tumor targeting and overcome the limitations of single treatment models, we have developed a nanoplatform that is both tumor-targeted and enzyme-responsive. This nanoplatform integrates photothermal gold nanorods (AuNRs) and protein drugs into a single system. This nanosystem, known as AuNRs@HA-mPEG-Deta-LA, was fabricated by modifying gold nanorods (AuNRs) with a polymeric ligand called hyaluronic acid-grafted-(mPEG/diethylenetriamine-conjugated-lipoic acid). The purpose of this fabrication was to load cytochrome c (CC) and utilize it for the synergetic protein-photothermal therapy of cancer. The resulting nanoplatform exhibited a high efficiency in loading proteins and demonstrated excellent stability in different biological environments. Additionally, CC-loaded AuNRs@HA-mPEG-Deta-LA not only enabled localized hyperthermia for photothermal therapy (PTT) with laser irradiation but also facilitated the release of CC under the action of hyaluronidase, an enzyme known to be overexpressed in tumor cells. The confocal imaging results demonstrated that the presence of a specific polymeric ligand on this nanoparticle enhances the internalization of CD44-positive cancer cells, accelerates endo/lysosomal escape, and facilitates the controlled release of CC within the cells. Furthermore, the results of the MTT assay also showed that AuNRs@HA-mPEG-Deta-LA as a protein nanocarrier demonstrated excellent biocompatibility. Importantly, this synergistic therapeutic strategy effectively induced apoptosis in A549 cancer cells by increasing the intracellular concentration of CC and utilizing the photothermal conversion of AuNRs, which was observed to be more effective compared to using only protein therapy or PTT. Therefore, this study showcased a nanoplatform based on AuNRs that has great potential for tumor-targeted protein delivery in combination with PTT in cancer treatment.
Collapse
Affiliation(s)
- Bo Wang
- Jilin Provincial Key Laboratory of Straw-Based Functional Materials, Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, P. R. China.
| | - Xin Jun Xu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, China.
| | - Yan Fu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, China.
| | - Bo Ren
- Jilin Provincial Key Laboratory of Straw-Based Functional Materials, Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, P. R. China.
| | - Xiao Dong Yang
- Jilin Provincial Key Laboratory of Straw-Based Functional Materials, Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, P. R. China.
| | - Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, China.
| |
Collapse
|
3
|
Kly S, Huang Y, Moffitt MG. Enhancement of cellular uptake by increasing the number of encapsulated gold nanoparticles in polymeric micelles. J Colloid Interface Sci 2023; 652:142-154. [PMID: 37591076 DOI: 10.1016/j.jcis.2023.08.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
We apply a combination of polycaprolactone (PCL)-thiol ligand functionalization with flow-controlled microfluidic block copolymer self-assembly to produce biocompatible gold nanoparticle (GNP)-loaded micellar polymer nanoparticles (GNP-PNPs) in which GNPs are encapsulated within PCL cores surrounded by an external layer of poly(ethylene glycol) (PEG). By varying both the relative amount of block copolymer and the microfluidic flow rate, a series of GNP-PNPs are produced in which the mean number of GNPs per PNP in the < 50-nm fraction (Zave,d< 50 nm) varies between 0.1 and 1.9 while the external PEG surface is constant. Zave,d< 50 nm values are determined by statistical analysis of TEM images and compared with the results of cell uptake experiments on MDA-MB-231 cancer cells. For Zave,d< 50 nm ≤ 1 (including a control sample of individual GNPs also with a PEG surface layer), cell uptake is relatively constant, but increases sharply for Zave,d< 50 nm > 1, with a factor of 7 enhancement as Zave,d< 50 nm increases from 1 to ∼2. Enabled by the shear processing control provided by the microfluidic chip, these results provide the first evidence that cellular uptake can be enhanced specifically by increasing the number of GNPs per vector, with other parameters, including polymeric material, internal structure, and external surface chemistry, held constant. They also demonstrate a versatile platform for packaging GNPs in biocompatible polymeric carriers with flow-controlled formulation optimization for various therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Sundiata Kly
- Department of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| | - Yuhang Huang
- Department of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| | - Matthew G Moffitt
- Department of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada.
| |
Collapse
|
4
|
Petrescu DS, Zahr OK, Abu-Baker I, Blum AS. Biomolecular Self-Assembly of Nanorings on a Viral Protein Template. Biomacromolecules 2022; 23:3407-3416. [PMID: 35791729 DOI: 10.1021/acs.biomac.2c00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dan S. Petrescu
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal H3A 0B8, Canada
| | - Omar K. Zahr
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal H3A 0B8, Canada
| | - Ismael Abu-Baker
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal H3A 0B8, Canada
| | - Amy Szuchmacher Blum
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal H3A 0B8, Canada
| |
Collapse
|
5
|
Zhou B, Guo X, Yang N, Huang Z, Huang L, Fang Z, Zhang C, Li L, Yu C. Surface engineering strategies of gold nanomaterials and their applications in biomedicine and detection. J Mater Chem B 2021; 9:5583-5598. [PMID: 34161402 DOI: 10.1039/d1tb00181g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gold nanomaterials have potential applications in biosensors and biomedicine due to their controllable synthesis steps, high biocompatibility, low toxicity and easy surface modification. However, there are still various limitations including low water solubility and stability, which greatly affect their applications. In addition, some synthetic methods are very complicated and costly. Therefore, huge efforts have been made to improve their properties. This review mainly introduces the strategies for surface modification of gold nanomaterials, such as amines, biological small molecules and organic small molecules as well as the biological applications of these functionalized AuNPs. We aim to provide effective ideas for better functionalization of gold nanomaterials in the future.
Collapse
Affiliation(s)
- Bicong Zhou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Xiaolu Guo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Zhongxi Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Lihua Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Zhijie Fang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| |
Collapse
|
6
|
Chen SH, Huang WW, Dehvari K, Ling YC, Ghule AV, Tsai SL, Chang JY. Photosensitizer–conjugated Cu-In-S heterostructured nanorods for cancer targeted photothermal/photodynamic synergistic therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:793-802. [DOI: 10.1016/j.msec.2018.12.107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 11/01/2018] [Accepted: 12/26/2018] [Indexed: 12/31/2022]
|