1
|
Konwar M, Hazarika N, Sarmah BK, Das A. Ruthenium(II)-Catalyzed Oxidative Annulation of Imidazo[1,5-a]quinolin-2-iums Salts and Internal Alkynes via C-H Bond Activation. Chemistry 2024; 30:e202401133. [PMID: 38593238 DOI: 10.1002/chem.202401133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
Ruthenium(II)-catalyzed synthesis of π-conjugated fused imidazo[1,5-a]quinolin-2-ium derivatives have been achieved via C-H activation of quinoline-functionalized NHC (NHC=N-heterocyclic carbene) and oxidative coupling with internal alkynes. The reaction occurred with high efficiency, broad substrate scope, tolerates a wide range of functional groups and utilized into a gram-scale. Synthetic applications of the coupled product have been exemplified in the late-stage derivatization of various highly functionalized scaffolds. Moreover, most of the annulated products exhibit intense fluorescence and have potential applications in optoelectronic devices. Mechanistic studies have provided insights into the spectroscopic characterization of key five-membered ruthenacycle intermediate and Ru(0) sandwich species. Based on several control experiments, deuterium-kinetic isotope effect, and thermodynamic activation parameters the mechanistic finding demonstrated that fused imidazo-[1,5-a]quinolin-2-ium C(2)-H bond cleavage is the rate-determining step and ruling out the possibility of reductive elimination for controlling the rate of reaction.
Collapse
Affiliation(s)
- Monuranjan Konwar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nitumoni Hazarika
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Bikash Kumar Sarmah
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
- Department of Chemistry, Sonari College, Charaideo, 785690, Assam, India
| | - Animesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
2
|
Konwar M, Hazarika N, Das A. Ru/O 2-Catalyzed Oxidative C-H Activation/Alkyne Annulation Using Quinoline-Functionalized NHC as a Directing and Functionalizable Group. Org Lett 2024; 26:2965-2970. [PMID: 38593400 DOI: 10.1021/acs.orglett.4c00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The ruthenium/O2-catalyzed oxidative annulation reaction of imidazo[1,5-a]quinolin-2-ium salts with alkynes via N-heterocyclic carbene-directed C-H activation to obtain π-conjugated fused imidazo[1,5-a]quinolin-2-ium derivatives is reported. Molecular oxygen has been explored as an economic and clean oxidant and an alternative to metal oxidants. The current protocol exhibits a wide range of substrate scope including bioactive (±)-α-tocopherol derivatives. Moreover, most of the annulated products show strong fluorescence properties, indicating their potential for making new light-emitting materials.
Collapse
Affiliation(s)
- Monuranjan Konwar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam India
| | - Nitumoni Hazarika
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam India
| | - Animesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam India
| |
Collapse
|
3
|
Bauri S, Ramachandran A, Rit A. (Benz)imidazo[1,2-a]quinolinium Salts: Access via Unprecedented Regiospecific non-AAIPEX Strategy and Study of Their Tunable Properties. Chemistry 2024; 30:e202303744. [PMID: 38226763 DOI: 10.1002/chem.202303744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
An unprecedented non-AAIPEX protocol has been developed to access diverse monosubstituted cationic polycyclic heteroaromatic compounds (cPHACs) from the readily available azolium salts and phenacyl bromides via Ru(II)-catalyzed tandem annulation cum aromatization. This atom-economic protocol executes a range of intermediate steps e. g. double C-H activation, nucleophilic addition, annulation, and dehydration cum aromatization in one-pot manner under the generation of H2O as the sole byproduct. Moreover, the systematic tunability of photo-physical and electrochemical properties of these new class of cPHACs can be authenticated from the DFT calculated frontier molecular orbital energies that might be beneficial for their potential applications in optoelectronics and DNA intercalation.
Collapse
Affiliation(s)
- Somnath Bauri
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Arya Ramachandran
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Arnab Rit
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
4
|
Ibáñez-Ibáñez L, Mollar-Cuni A, Apaloo-Messan E, Sharma AK, Mata JA, Maseras F, Vicent C. Ion mobility mass spectrometry uncovers regioselectivity in the carboxylate-assisted C-H activation of palladium N-heterocyclic carbene complexes. Dalton Trans 2024; 53:656-665. [PMID: 38073605 DOI: 10.1039/d3dt02793g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Carboxylate-assisted Pd-catalyzed C-H bond activation constitutes a mild and versatile synthetic tool to efficiently and selectively cleave inert C-H bonds. Herein, we demonstrate a simple method to experimentally evaluate both reactivity and selectivity in such systems using mass spectrometry (MS) methods. The N-heterocyclic carbene (NHC) cations [(NHC)PdX]+, bearing as X- ligand bases commonly used to promote the C-H activation (carboxylates and bicarbonate), are generated in the gas-phase by ESI-MS. Their C-H bond activation at the N-bound groups of the NHC is then studied using Collision Induced Dissociation (CID) experiments. Ion Mobility Spectrometry (IM)-MS is exploited to identify a number of regioisomers associated with the distinctive site selective C-H activations. It is demonstrated that such C-H activation concomitant with acetic acid release occurs from a mixture of activated [(NHC-H)Pd(CH3CO2H)]+ and non-activated [(NHC)Pd(CH3CO2)]+ complexes. The identity of the X-type ligands (X = Cl-, carboxylates and bicarbonate) has a significant impact on the regioisomer branching ratio upon CID conditions. IM-MS in conjunction with a DFT mechanistic study is presented for the acetate-assisted C-H activation of the [(NHC)Pd(CH3CO2)]+ cation featuring butyl and aryl as N-donor groups.
Collapse
Affiliation(s)
- Laura Ibáñez-Ibáñez
- Institute of Advanced Materials (INAM), Net of organometallic chemistry for sustainable solutions (OASIS), Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| | - Andres Mollar-Cuni
- Institute of Advanced Materials (INAM), Net of organometallic chemistry for sustainable solutions (OASIS), Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| | - Edmond Apaloo-Messan
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007 Tarragona, Spain.
| | - Akhilesh K Sharma
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007 Tarragona, Spain.
| | - Jose A Mata
- Institute of Advanced Materials (INAM), Net of organometallic chemistry for sustainable solutions (OASIS), Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007 Tarragona, Spain.
| | - Cristian Vicent
- Serveis Centrals d'Instrumentació Científica (SCIC). Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| |
Collapse
|
5
|
Bauri S, Ramachandran A, Rit A. Base-catalyzed Effective C2-Amidation of Azolium Salts Using Isocyanates under Mild Conditions. Chem Asian J 2023; 18:e202201301. [PMID: 36846935 DOI: 10.1002/asia.202201301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/31/2023] [Indexed: 03/01/2023]
Abstract
An unprecedented base-catalyzed hydroarylation of isocyanates with azolium salts was developed, which follows a simple reaction pathway and provided facile access to diverse C2-amidated azolium salts under mild conditions. Importantly, this methodology can also be applied for the successive C2-amidation of a bisimidazolium salt with two different isocyanates to provide the corresponding unsymmetrically substituted bisamide derivatives. Notably, the obtained amidated salts can also serve as a prominent carbene surrogate for the synthesis of metal-NHC complexes.
Collapse
Affiliation(s)
- Somnath Bauri
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Arya Ramachandran
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Arnab Rit
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
6
|
Wang K, Liu J, Liu P, Wang D, Han T, Tang BZ. Multifunctional Fluorescent Main-Chain Charged Polyelectrolytes Synthesized by Cascade C-H Activation/Annulation Polymerizations. J Am Chem Soc 2023; 145:4208-4220. [PMID: 36763076 DOI: 10.1021/jacs.2c12654] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Fluorescent polyelectrolytes have attracted enormous attention as functional polymer materials. In contrast with the widely studied conjugated polyelectrolytes with ionic groups in side chains, fluorescent main-chain charged polyelectrolytes (MCCPs) have rarely been explored due to the large synthetic difficulty. Herein, we develop a facile and atom-economical N-heterocyclic carbene-directed cascade C-H activation/annulation polymerization strategy that can transform readily available imidazolium substrates and internal diynes into multifunctional fluorescent MCCPs with complex structures and high molecular weights (absolute Mn up to 135 600) in nearly quantitative yields. The presence of multisubstituted polycyclic N-heteroaromatic cations in polymer backbones endow the obtained MCCPs with excellent solution processability, high thermal stability, and dual-state efficient fluorescence in both solution and aggregate states. Benefiting from the strong electron-withdrawing capability of the cationic heterocycles in main chains, multicolored aggregate-state fluorescence can be readily achieved by modifying the substituents around the cationic ring-fused core. Taking advantage of the good photosensitivity of the fluorescent MCCP thin films, multiscale and high-resolution fluorescent photopatterns with different colors can be facilely prepared with potential applications in optical display devices and anticounterfeiting systems. Moreover, the strong electrostatic interactions of these cationic MCCPs with anionic polyelectrolytes enable them to form multicolored fluorescent interfacial polyelectrolyte complexation microfibers with directly visualized internal structures. Such flexible microfibers can be further made into diversified forms of fiber-based macroscopic patterns or painting.
Collapse
Affiliation(s)
- Kang Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junkai Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Peiying Liu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
7
|
Mollar-Cuni A, Ibáñez-Ibáñez L, Guisado-Barrios G, Mata JA, Vicent C. Introducing Ion Mobility Mass Spectrometry to Identify Site-Selective C-H Bond Activation in N-Heterocyclic Carbene Metal Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2291-2300. [PMID: 36374280 DOI: 10.1021/jasms.2c00257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The activation of C-H bonds in a selective manner still constitutes a major challenge from a synthetic point of view; thus, it remains an active area of fundamental and applied research. Herein, we introduce ion mobility spectrometry mass spectrometry-based (IM-MS) approaches to uncover site-selective C-H bond activation in a series of metal complexes of general formula [(NHC)LMCl]+ (NHC = N-heterocyclic carbene; L = pentamethylcyclopentadiene (Cp*) or p-cymene; M = Pd, Ru, and Ir). The C-H bond activation at the N-bound groups of the NHC ligand is promoted upon collision induced dissociation (CID). The identification of the resulting [(NHC-H)LM]+ isomers relies on the distinctive topology that such cyclometalated isomers adopt upon site-selective C-H bond activation. Such topological differences can be reliably evidenced as different mobility peaks in their respective CID-IM mass spectra. Alternative isomers are also identified via dehydrogenation at the Cp*/p-cymene (L) ligands to afford [(NHC)(L-H)M]+. The fragmentation of the ion mobility-resolved peaks is also investigated by CID-IM-CID. It enables the assignment of mobility peaks to the specific isomers formed from C(sp2)-H or C(sp3)-H bond activation and distinguishes them from the Cp*/p-cymene (L) dehydrogenation isomers. The conformational change of the NHC ligands upon C-H bond activation, concomitant with cyclometalation, is also discussed on the basis of the estimated collision cross section (CCS). A unique conformation change of the pyrene-tagged NHC members is identified that involves the reorientation of the NHC ring accompanied by a folding of the pyrene moiety.
Collapse
Affiliation(s)
- Andrés Mollar-Cuni
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain
| | - Laura Ibáñez-Ibáñez
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain
| | - Gregorio Guisado-Barrios
- Departamento de Química Inorgánica. Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009Zaragoza, Spain
| | - Jose A Mata
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain
| | - Cristian Vicent
- Serveis Centrals d'Intrumentació Científica (SCIC). Universitat Jaume I, Avda. Sos Baynat s/n, 12071Castellón, Spain
| |
Collapse
|
8
|
Rh(III)-Catalyzed C-H Activation/Intramolecular Annulation for the Synthesis of N-Methoxydihydropyrimidin-2-one Fused Heterocycles. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Ahmad MS, Meguellati K. Recent Advances in Metal Catalyzed C−H Functionalization with a Wide Range of Directing Groups. ChemistrySelect 2022. [DOI: 10.1002/slct.202103716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Kamel Meguellati
- School of Pharmacy Jinan University 855 Xingye Avenue East Guangzhou 511436 China
| |
Collapse
|
10
|
Li Q, Hamamoto Y, Kwek G, Xing B, Li Y, Ito S. Diazapentabenzocorannulenium: A Hydrophilic/Biophilic Cationic Buckybowl. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qiang‐Qiang Li
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Yosuke Hamamoto
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Germain Kwek
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Shingo Ito
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
11
|
Li QQ, Hamamoto Y, Tan CCH, Sato H, Ito S. 1,3-Dipolar cycloaddition of azomethine ylides and imidoyl halides for synthesis of π-extended imidazolium salts. Org Chem Front 2022. [DOI: 10.1039/d2qo00941b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new synthetic approach to π-extended imidazolium salts is developed based on 1,3-dipolar cycloaddition of polycyclic aromatic azomethine ylides with imidoyl chlorides in the presence of cesium fluoride as a key additive.
Collapse
Affiliation(s)
- Qiang-Qiang Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yosuke Hamamoto
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Cheryl Cai Hui Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hiroyasu Sato
- Rigaku Corporation, 3-9-12 Matsubara-Cho, Akishima, Tokyo 196-8666, Japan
| | - Shingo Ito
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
12
|
Karak P, Rana SS, Choudhury J. Cationic π-extended heteroaromatics via a catalytic C-H activation annulative alkyne-insertion sequence. Chem Commun (Camb) 2021; 58:133-154. [PMID: 34849515 DOI: 10.1039/d1cc05590a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cationic π-conjugated organic molecules have broad applications in materials science as next-generation organic materials. The annulative alkyne-insertion π-extension (AAIPEX) strategy has emerged as a promising synthetic approach for the rapid synthesis of cationic polycyclic heteroaromatic compounds (cPHACs) in a single step. The AAIPEX reaction provides a synthetic shortcut to achieve complex organic molecules from simple (hetero)arene templates and alkynes as π-extending partners, which would otherwise be difficult to achieve using traditional methods. In general, a step-economic AAIPEX protocol proceeds via C-H activation of unfunctionalized heteroarene templates, followed by alkyne insertion-annulation to furnish cPHACs. In this Feature Article, recent progress in the AAIPEX strategy to construct cPHACs is described along with brief illustrations of the resulting cPHACs in luminescence-related applications.
Collapse
Affiliation(s)
- Pirudhan Karak
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462 066, India.
| | - Samim Sohel Rana
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462 066, India.
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462 066, India.
| |
Collapse
|
13
|
Li QQ, Hamamoto Y, Kwek G, Xing B, Li Y, Ito S. Diazapentabenzocorannulenium: A Hydrophilic/Biophilic Cationic Buckybowl. Angew Chem Int Ed Engl 2021; 61:e202112638. [PMID: 34863045 DOI: 10.1002/anie.202112638] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 11/05/2022]
Abstract
Polycyclic aromatic molecules are promising functional materials for a wide range of applications, especially in organic electronics. However, their largely hydrophobic nature has impeded further applications. As such, imparting high solubility/hydrophilicity to polycyclic aromatic molecules leads to a breakthrough in this research field. Herein, we report the synthesis of diazapentabenzocorannulenium, a cationic nitrogen-embedded buckybowl bearing a central imidazolium core, by a bottom-up strategy from polycyclic aromatic azomethine ylide. X-ray crystallography analyses have revealed a bowl-shaped molecular structure that is capable of forming charge-segregated one-dimensional columns by bowl-in-bowl packing. In addition to its fluorescence capabilities and high dispersibility in water, the molecule was found to selectively localize in the mitochondria of various tumor cells, showing potential as viable mitochondria-selective fluorescent probes.
Collapse
Affiliation(s)
- Qiang-Qiang Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yosuke Hamamoto
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Germain Kwek
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Shingo Ito
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
14
|
Oh H, Byun HW, Moon K, Kim S, Ghosh P, An W, Kwak JH, Park JS, Mishra NK, Kim IS. Synthesis of π-Extended Heterocycles via Rh(III)-Catalyzed Oxidative Annulation of 5-Aryl Pyrazinones with Alkynes. J Org Chem 2021; 86:16349-16360. [PMID: 34590482 DOI: 10.1021/acs.joc.1c01752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The Rh(III)-catalyzed C-H functionalization and subsequent oxidative annulation between 5-aryl pyrazinones and internal alkynes are reported. This protocol provides facile access to a wide range of pyrazinone-linked naphthalenes via the C(sp2)-H alkenylation and subsequent annulation. This transformation is characterized by mild conditions, simplicity, and excellent functional group compatibility. Notably, it is a first report of the utilization of pyrazinones as directing groups in C-H functionalization.
Collapse
Affiliation(s)
- Harin Oh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hee Won Byun
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyeongwon Moon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Saegun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Prithwish Ghosh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Won An
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jong Hwan Kwak
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jung Su Park
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | | | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
15
|
Biancalana L, Bresciani G, Marchetti F, Pampaloni G. Serendipitous Formation of a Zwitterionic Imidazolium Molecule from α‐Diimine with Glyoxal as Unusual Cyclization Agent. ChemistrySelect 2021. [DOI: 10.1002/slct.202102368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lorenzo Biancalana
- Department of Chemistry and Industrial Chemistry University of Pisa Via G. Moruzzi 13 56124 Pisa Italy
- CIRCC via Celso Ulpiani 27 I-70126 Bari Italy
| | - Giulio Bresciani
- Department of Chemistry and Industrial Chemistry University of Pisa Via G. Moruzzi 13 56124 Pisa Italy
- CIRCC via Celso Ulpiani 27 I-70126 Bari Italy
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry University of Pisa Via G. Moruzzi 13 56124 Pisa Italy
- CIRCC via Celso Ulpiani 27 I-70126 Bari Italy
| | - Guido Pampaloni
- Department of Chemistry and Industrial Chemistry University of Pisa Via G. Moruzzi 13 56124 Pisa Italy
- CIRCC via Celso Ulpiani 27 I-70126 Bari Italy
| |
Collapse
|
16
|
Tiwari CS, Illam PM, Donthireddy SNR, Rit A. Recent Advances in the Syntheses and Catalytic Applications of Homonuclear Ru-, Rh-, and Ir-Complexes of C NHC ^C Cyclometalated Ligands. Chemistry 2021; 27:16581-16600. [PMID: 34469015 DOI: 10.1002/chem.202102540] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 12/17/2022]
Abstract
In the past few decades, chemistry of cyclometalated species has gained momentum with increased applications in several areas of scientific developments. Cyclometalation reactions result in the formation of stable metallacycles through the generation of metal-carbon covalent bonds by activating the unreactive Csp2 -H or Csp3 -H bonds. The extra stability gained by the formation of metallacycles enhances their applicability scopes especially in the area of homogeneous catalysis. In the recent research development in this area, NHC ligands (strong σ-donor and generally, weak π-acceptor) have been found to be one of the most suitable candidates for the intramolecular C-H activation process which leads to the cyclometalated species. The growth in the area of cyclometalation chemistry that started in the late 20th century is still continuing and in the past few decades, various examples of NHC derived transition metal-based cyclometalated complexes came into the picture. As covering all the reported literatures in this area (includes mainly late transition metals) will exceed the limits of minireview, we restricted ourselves to the recent (2015 - May 2021) examples of the most common Ru-, Rh-, and Ir-based CNHC ^C cyclometalated complexes and their applications in various homogeneous catalytic conversions such as transfer hydrogenation, amidation, oxidation of alcohols, annulations, and so forth.
Collapse
Affiliation(s)
| | | | - S N R Donthireddy
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Arnab Rit
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
17
|
Mayakrishnan S, Tamizmani M, Balachandran C, Aoki S, Maheswari NU. Rh(iii)-Catalysed synthesis of cinnolinium and fluoranthenium salts using C-H activation/annulation reactions: organelle specific mitochondrial staining applications. Org Biomol Chem 2021; 19:5413-5425. [PMID: 34047328 DOI: 10.1039/d1ob00376c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The construction of a novel class of indazolo[2,1-a]cinnolin-7-ium and diazabenzofluoranthenium salts was developed by using Rh(iii)-catalyzed C-H activation/annulation reactions with 2-phenyl-2H-indazole, and internal alkynes, which resulted in structurally important polycyclic heteroaromatic compounds (PHAs). This reaction uses mild reaction conditions and has a high efficiency, low catalyst loading, and wide substrate scope. The overall catalytic process involves C-H activation followed by C-C/C-N bond formation. Furthermore, the synthesised cinnolinium/fluoranthenium salts exhibit potential fluorescence properties and 5i was targeted in particular for specific mitochondrial staining in order to investigate cancer cell lines.
Collapse
Affiliation(s)
- Sivakalai Mayakrishnan
- Organic & Bioorganic Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai-600020, India.
| | - Masilamani Tamizmani
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Chandrasekar Balachandran
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Narayanan Uma Maheswari
- Organic & Bioorganic Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai-600020, India.
| |
Collapse
|
18
|
Abstract
Sustainable transformations towards the production of valuable chemicals constantly attract interest, both in terms of academic and applied research. C–H activation has long been scrutinized in this regard, given that it offers a straightforward pathway to prepare compounds of great significance. In this context, directing groups (DG) have paved the way for chemical transformations that had not been achievable using traditional reactions. Few steps, high yields, selectivity and activation of inert substrates are some of the invaluable assets of directed catalysis. Additionally, the employment of traceless directing groups (TDG) greatly improves and simplifies this strategy, enabling the realization of multi-step reactions in one-pot, cascade procedures. Cheap, abundant, readily available transition metal salts and complexes can catalyze a plethora of reactions employing TDGs, usually under low catalyst loadings—rarely under stoichiometric amounts, leading in greater atom economy and milder conditions with increased yields and step-economy. This review article summarizes all the work done on TDG-assisted catalysis with manganese, iron, cobalt, nickel, or copper catalysts, and discusses the structure-activity relationships observed, by presenting the catalytic pathways and range of transformations reported thus far.
Collapse
|
19
|
Kumar S, Nunewar S, Usama KM, Kanchupalli V. Rh(III)‐Catalyzed [3+2] Annulation and C−H Alkenylation of Indoles with 1,3‐Diynes by C−H Activation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100212] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sanjeev Kumar
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Saiprasad Nunewar
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Khan Mohammad Usama
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Vinaykumar Kanchupalli
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| |
Collapse
|
20
|
Nunewar S, Kumar S, Talakola S, Nanduri S, Kanchupalli V. Co(III), Rh(III) & Ir(III)‐Catalyzed Direct C−H Alkylation/Alkenylation/Arylation with Carbene Precursors. Chem Asian J 2021; 16:443-459. [DOI: 10.1002/asia.202001219] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/13/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Saiprasad Nunewar
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Sanjeev Kumar
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Srilakshmi Talakola
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Srinivas Nanduri
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Vinaykumar Kanchupalli
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| |
Collapse
|
21
|
Kumar S, Nunewar S, Oluguttula S, Nanduri S, Kanchupalli V. Recent advances in Rh(iii)/Ir(iii)-catalyzed C–H functionalization/annulation via carbene migratory insertion. Org Biomol Chem 2021; 19:1438-1458. [DOI: 10.1039/d0ob02309d] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The review highlighted diverse annulations, including nitrogen, oxygen, sulfur heterocycles and carbocylizations via Rh(iii)/Ir(iii)-catalyzed C–H functionalization/annulation with various arene and carbene precursors.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| | - Saiprasad Nunewar
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| | - Srilekha Oluguttula
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| | - Srinivas Nanduri
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| | - Vinaykumar Kanchupalli
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| |
Collapse
|
22
|
Jiang B, Jia J, Sun Y, Wang Y, Zeng J, Bu X, Shi L, Sun X, Yang X. γ-Carboline synthesis enabled by Rh(iii)-catalysed regioselective C-H annulation. Chem Commun (Camb) 2020; 56:13389-13392. [PMID: 33034593 DOI: 10.1039/d0cc04740f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A redox-neutral Rh(iii)-catalyzed C-H annulation of indolyl oximes was developed. Relying on the use of various alkynyl silanes as the terminal alkyne surrogates, the reaction exhibited a reverse regioselectivity, thus giving an exclusive and easy way for the synthesis of a wide range of substituent free γ-carbolines at C3 position with high efficiency. Deuterium-labelling experiments and kinetic analysis have preliminarily shed light on the working mode of this catalytic system.
Collapse
Affiliation(s)
- Bo Jiang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bauri S, Mallik A, Rit A. Naphthyl-Derived Orthometalated RuII-NHC Complexes: Effect of the NHC Donors and/or Substitution Pattern on Their Synthesis and Catalytic Activity. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Somnath Bauri
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Anirban Mallik
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Arnab Rit
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
24
|
Synthesis and Characterization of Arsenic(III) Oxide Nanoparticles as Potent Inhibitors of MCF 7 Cell Proliferation through Proapoptotic Mechanism. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00726-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
25
|
Abstract
In this contribution, we provide a comprehensive overview of C-H activation methods promoted by NHC-transition metal complexes, covering the literature since 2002 (the year of the first report on metal-NHC-catalyzed C-H activation) through June 2019, focusing on both NHC ligands and C-H activation methods. This review covers C-H activation reactions catalyzed by group 8 to 11 NHC-metal complexes. Through discussing the role of NHC ligands in promoting challenging C-H activation methods, the reader is provided with an overview of this important area and its crucial role in forging carbon-carbon and carbon-heteroatom bonds by directly engaging ubiquitous C-H bonds.
Collapse
Affiliation(s)
- Qun Zhao
- Department of Chemistry , Rutgers University , 73 Warren Street , Newark , New Jersey 07102 , United States
| | - Guangrong Meng
- Department of Chemistry , Rutgers University , 73 Warren Street , Newark , New Jersey 07102 , United States
| | - Steven P Nolan
- Department of Chemistry and Center for Sustainable Chemistry , Ghent University , Krijgslaan 281 , 9000 Ghent , Belgium
| | - Michal Szostak
- Department of Chemistry , Rutgers University , 73 Warren Street , Newark , New Jersey 07102 , United States
| |
Collapse
|
26
|
Rej S, Ano Y, Chatani N. Bidentate Directing Groups: An Efficient Tool in C-H Bond Functionalization Chemistry for the Expedient Construction of C-C Bonds. Chem Rev 2020; 120:1788-1887. [PMID: 31904219 DOI: 10.1021/acs.chemrev.9b00495] [Citation(s) in RCA: 587] [Impact Index Per Article: 146.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the past decades, synthetic organic chemistry discovered that directing group assisted C-H activation is a key tool for the expedient and siteselective construction of C-C bonds. Among the various directing group strategies, bidentate directing groups are now recognized as one of the most efficient devices for the selective functionalization of certain positions due to fact that its metal center permits fine, tunable, and reversible coordination. The family of bidentate directing groups permit various types of assistance to be achieved, such as N,N-dentate, N,O-dentate, and N,S-dentate auxiliaries, which are categorized based on the coordination site. In this review, we broadly discuss various C-H bond functionalization reactions for the formation of C-C bonds with the aid of bidentate directing groups.
Collapse
Affiliation(s)
- Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| |
Collapse
|
27
|
Benaissa I, Pallova L, Morantin ME, Lafitte T, Huynh M, Barthes C, Vendier L, Lugan N, Bastin S, César V. N-Heterocyclic Carbenes as Key Intermediates in the Synthesis of Fused, Mesoionic, Tricyclic Heterocycles. Chemistry 2019; 25:13030-13036. [PMID: 31385630 DOI: 10.1002/chem.201903242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Indexed: 01/16/2023]
Abstract
Coupling between 5-bromoimidazo[1,5-a]pyridinium salts and malonate or arylacetate esters leads to a facile and straightforward access to the new mesoionic, fused, tricyclic system of imidazo[2,1,5-cd]indolizinium-3-olate. Mechanistic studies show that the reaction pathway consists of nucleophilic aromatic substitution on the cationic, bicyclic heterocycle by an enolate-type moiety and in the nucleophilic attack of a transient free N-heterocyclic carbene (NHC) species on the ester group; the relative order of these two steps depends on the nature of the starting ester. This work highlights the valuable implementation of free NHC species as key intermediates in synthetic chemistry, beyond their classical use as stabilizing ligands or organocatalysts.
Collapse
Affiliation(s)
- Idir Benaissa
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, 31077, France
| | - Lenka Pallova
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, 31077, France
| | | | - Thomas Lafitte
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, 31077, France
| | - Mathieu Huynh
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, 31077, France
| | - Cécile Barthes
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, 31077, France
| | - Laure Vendier
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, 31077, France
| | - Noël Lugan
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, 31077, France
| | | | - Vincent César
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, 31077, France
| |
Collapse
|
28
|
Liu Z, Zhang W, Guo S, Zhu J. Spiro[indene-1,4'-oxa-zolidinones] Synthesis via Rh(III)-Catalyzed Coupling of 4-Phenyl-1,3-oxazol-2(3 H)-ones with Alkynes: A Redox-Neutral Approach. J Org Chem 2019; 84:11945-11957. [PMID: 31436097 DOI: 10.1021/acs.joc.9b01804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transition-metal-catalyzed C-H activation synthesis of heterocyclic spiro[4,4]nonanes has persistently witnessed the use of additional stoichiometric transition-metal oxidant when employing C═C bond as the spiro ring closure site. Herein, we have addressed the issue by reporting a redox-neutral strategy for spiro[indene-1,4'-oxa-zolidinones] synthesis via Rh(III)-catalyzed coupling of 4-phenyl-1,3-oxazol-2(3H)-ones with alkynes. The synthesis features a broad substrate scope and high regiospecificity.
Collapse
Affiliation(s)
- Zhongsu Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures , Nanjing University , Nanjing 210023 , China
| | - Wenjing Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures , Nanjing University , Nanjing 210023 , China
| | - Shan Guo
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures , Nanjing University , Nanjing 210023 , China
| | - Jin Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
29
|
Luo H, Xie Q, Sun K, Deng J, Xu L, Wang K, Luo X. Rh(iii)-catalyzed C-7 arylation of indolines with arylsilanes via C-H activation. RSC Adv 2019; 9:18191-18195. [PMID: 35515217 PMCID: PMC9064675 DOI: 10.1039/c9ra04142g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023] Open
Abstract
Site-selective synthesis of C-7 arylated indolines has been achieved via oxidative arylation of indolines with arylsilanes under Rh(iii)-catalyzed C-H activation of indolines by using CuSO4 as a co-oxidant. This transformation has been explored for a wide range of substrates under mild conditions.
Collapse
Affiliation(s)
- Haiqing Luo
- Department of Chemistry & Chemical Engineering, Gannan Normal University Ganzhou 341000 China
| | - Qi Xie
- Department of Chemistry & Chemical Engineering, Gannan Normal University Ganzhou 341000 China
| | - Kai Sun
- Department of Chemistry & Chemical Engineering, Gannan Normal University Ganzhou 341000 China
| | - Jianbo Deng
- Department of Chemistry & Chemical Engineering, Gannan Normal University Ganzhou 341000 China
| | - Lin Xu
- Department of Chemistry & Chemical Engineering, Gannan Normal University Ganzhou 341000 China
| | - Kejun Wang
- Department of Chemistry & Chemical Engineering, Gannan Normal University Ganzhou 341000 China
| | - Xuzhong Luo
- Department of Chemistry & Chemical Engineering, Gannan Normal University Ganzhou 341000 China
| |
Collapse
|
30
|
Martínez ÁM, Alonso I, Rodríguez N, Gómez Arrayás R, Carretero JC. Rhodium‐Catalyzed Copper‐Assisted Intermolecular Domino C−H Annulation of 1,3‐Diynes with Picolinamides: Access to Pentacyclic π‐Extended Systems. Chemistry 2019; 25:5733-5742. [DOI: 10.1002/chem.201900162] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/07/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Ángel Manu Martínez
- Departamento de Química OrgánicaFacultad de CienciasUniversidad Autónoma de Madrid (UAM), Cantoblanco 28049 Madrid Spain
| | - Inés Alonso
- Departamento de Química OrgánicaFacultad de CienciasUniversidad Autónoma de Madrid (UAM), Cantoblanco 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid (UAM) 28049 Madrid Spain
| | - Nuria Rodríguez
- Departamento de Química OrgánicaFacultad de CienciasUniversidad Autónoma de Madrid (UAM), Cantoblanco 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid (UAM) 28049 Madrid Spain
| | - Ramón Gómez Arrayás
- Departamento de Química OrgánicaFacultad de CienciasUniversidad Autónoma de Madrid (UAM), Cantoblanco 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid (UAM) 28049 Madrid Spain
| | - Juan C. Carretero
- Departamento de Química OrgánicaFacultad de CienciasUniversidad Autónoma de Madrid (UAM), Cantoblanco 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid (UAM) 28049 Madrid Spain
| |
Collapse
|
31
|
Karak P, Dutta C, Dutta T, Koner AL, Choudhury J. Orchestrated catalytic double rollover annulation: rapid access to N-enriched cationic and neutral PAHs. Chem Commun (Camb) 2019; 55:6791-6794. [DOI: 10.1039/c9cc02710f] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Disclosed herein is a rhodium(iii)-catalyzed novel one-step back-to-back double rollover annulation on pyridine and pyrazine backbones leading to structurally and optoelectronically diverse class of nicely decorated multi-ring-fused, extensively π-conjugated, N-enriched PAH molecules by virtue of orchestrated quadruple C–H activation events.
Collapse
Affiliation(s)
- Pirudhan Karak
- Organometallics & Smart Materials Laboratory
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhopal 462 066
- India
| | - Champak Dutta
- Organometallics & Smart Materials Laboratory
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhopal 462 066
- India
| | - Tanoy Dutta
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhopal 462 066
- India
| | - Apurba Lal Koner
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhopal 462 066
- India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhopal 462 066
- India
| |
Collapse
|
32
|
Dutta C, Sainaba AB, Choudhury J. Annulating thiazolium cations via a direct double C–H activation strategy: Rh–N,S-heterocyclic carbene is the key. Chem Commun (Camb) 2019; 55:854-857. [DOI: 10.1039/c8cc07531j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metal–N,S-heterocyclic carbene intermediates are conveniently generated and utilized for the first time to construct N,S doubly-doped cationic tricyclic organic molecules which exhibit easily-tuneable emission.
Collapse
Affiliation(s)
- Champak Dutta
- Organometallics & Smart Materials Laboratory
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhopal 462 066
- India
| | - Arppitha Baby Sainaba
- Organometallics & Smart Materials Laboratory
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhopal 462 066
- India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhopal 462 066
- India
| |
Collapse
|