1
|
Du L, Li Y, Zhou Q, Zhang L, Shi T, Wang X, Zhang J, Zhao J, Wang J, Fan X. Facilitative preparation of graphene/cellulose aerogels with tunable microwave absorption properties for ultra-lightweight applications. J Colloid Interface Sci 2024; 679:987-994. [PMID: 39418901 DOI: 10.1016/j.jcis.2024.10.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Graphene aerogels, as a novel type of carbon-based composite material, have shown great potential in the field of wave absorption due to its characteristics of high conductivity, adjustable structure and good corrosion resistance. It is of great significance to precisely control the dielectric properties of graphene aerogel composites by effectively adjusting their microstructures through the preparing process design, ultimately leading to improve their wave-absorbing performances. In this study, two kinds of graphene/cellulose aerogel composites with three-dimensional porous structures, were successfully prepared using graphene and short staple cellulose as raw materials via the freeze-drying method based on the dissolution-regeneration strategy. A comparative analysis was conducted to examine the differences of microstructures, dielectric properties and corresponding electromagnetic wave absorption performances, which reveals that the graphene/cellulose aerogel composites with graphene nanosheets incorporated into the cellulose matrix realize superior absorbing performances. The graphene/cellulose aerogel composite with a 32 wt% graphene addition realizes effective electromagnetic wave absorbing (reflection loss less than -10 dB) in the whole X-band (8-12.4 GHz) in a relatively large thickness range (3.9-4.7 mm). The densities of the proposed aerogel are no more than 0.02 g/cm3, demonstrating great potential for excellent lightweight microwave absorbing materials. The multiscale electromagnetic wave absorption mechanism is summarized, which would provide an important reference for designing ultra-lightweight absorbing materials with perfect absorption in wideband.
Collapse
Affiliation(s)
- Lifei Du
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Yuekun Li
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Qian Zhou
- College of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China.
| | - Liangqing Zhang
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Tiantian Shi
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Xinlei Wang
- Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jinshang Zhang
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jing Zhao
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jiong Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Xiaomeng Fan
- Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
2
|
Zhang Z, Sèbe G, Hou Y, Wang J, Huang J, Zhou G. Grafting polymers from cellulose nanocrystals via surface‐initiated atom transfer radical polymerization. J Appl Polym Sci 2021. [DOI: 10.1002/app.51458] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhen Zhang
- SCNU‐TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics South China Normal University Guangzhou China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics South China Normal University Guangzhou China
| | - Gilles Sèbe
- Laboratoire de Chimie des Polymères Organiques University of Bordeaux, CNRS, Bordeaux INP Pessac France
| | - Yelin Hou
- Laboratoire de Chimie des Polymères Organiques University of Bordeaux, CNRS, Bordeaux INP Pessac France
| | | | - Jin Huang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing, and “the Belt and Road” International Joint Research Laboratory of Sustainable Materials Southwest University Chongqing China
- School of Chemistry and Chemical Engineering, and Engineering Research Center of Materials‐Oriented Chemical Engineering of Xinjiang Bintuan Shihezi University Shihezi China
| | - Guofu Zhou
- SCNU‐TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics South China Normal University Guangzhou China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics South China Normal University Guangzhou China
- Shenzhen Guohua Optoelectronics Tech. Co. Ltd. Shenzhen China
| |
Collapse
|
3
|
|
4
|
Grafting from cellulose nanofibres with naturally-derived oil to reduce water absorption. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Shahrokhinia A, Scanga RA, Biswas P, Reuther JF. PhotoATRP-Induced Self-Assembly (PhotoATR-PISA) Enables Simplified Synthesis of Responsive Polymer Nanoparticles in One-Pot. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02106] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ali Shahrokhinia
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Randall A. Scanga
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Priyanka Biswas
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - James F. Reuther
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
6
|
Yang X, Cui M, Zhou J, Zhang L, Zhou H, Luo Z, Zhou L, Hu H. Surface Fluorination Modification and Anti-Biofouling Study of a pHEMA Hydrogel. ACS APPLIED BIO MATERIALS 2021; 4:523-532. [PMID: 35014303 DOI: 10.1021/acsabm.0c01071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogel film was prepared by bulk polymerization. Then, it was surface modified by perfluorooctanoyl chloride to improve the anti-biofouling properties. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDXS), and atomic force microscopy (AFM) analyses demonstrated that the uniform dense fluorinated layer had been successfully grafted onto pHEMA. The water contact angle (WCA) of the modified pHEMA film increased to 135°, while the surface energy decreased to 13.32 mN/m. The protein and bacterial adhesion properties of the modified pHEMA were decreased significantly. The in vitro cytotoxicity showed that the modified pHEMA was noncytotoxic. Thus, the fluorinated modification on the material surface was a convenient and effective method to establish a hydrophobic and anti-biofouling surface.
Collapse
Affiliation(s)
- Xinlin Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mengmeng Cui
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jinsheng Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haohao Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhongkuan Luo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Li Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Huiyuan Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
7
|
Le Gars M, Bras J, Salmi-Mani H, Ji M, Dragoe D, Faraj H, Domenek S, Belgacem N, Roger P. Polymerization of glycidyl methacrylate from the surface of cellulose nanocrystals for the elaboration of PLA-based nanocomposites. Carbohydr Polym 2020; 234:115899. [DOI: 10.1016/j.carbpol.2020.115899] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 01/28/2023]
|
8
|
Shi C, Wu Z, Xu J, Wu Q, Li D, Chen G, He M, Tian J. Fabrication of transparent and superhydrophobic nanopaper via coating hybrid SiO 2/MWCNTs composite. Carbohydr Polym 2019; 225:115229. [PMID: 31521295 DOI: 10.1016/j.carbpol.2019.115229] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 01/12/2023]
Abstract
Nanopaper prepared from cellulose nanofibers (CNFs) is a kind of promising substrate for various high-tech devices. However, several drawbacks including poor water stability and weak corrosion resistance still remain, which limit the practical applications of the nanopaper. Herein, we present a simple and low-cost method for fabricating transparent and superhydrophobic nanopaper by spraying fluorinated silica/multi-walled carbon nanotubes (SiO2/MWCNTs) composite on the nanopaper. A series of functional nanopaper were fabricated, which shows excellent performance of water repellency, chemical stability, conductivity, thermostability and self-cleaning property. Among them, the nanopaper modified with the composite containing 0.5 wt% MWCNTs has a water contact angle of about 163°, transparency of 79.96% and the sheet resistance of 3.15 × 106 Ω sq-1. The combination of the promising features in a material offers attractive prospects, and enables our nanopaper could be tailored for emerging applications such as flexible electronics, display protection and intelligent packages.
Collapse
Affiliation(s)
- Congcan Shi
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, Guangzhou 510640, PR China
| | - Zhenhua Wu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, Guangzhou 510640, PR China
| | - Junfei Xu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, Guangzhou 510640, PR China
| | - Qiqi Wu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, Guangzhou 510640, PR China
| | - Dongjian Li
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, Guangzhou 510640, PR China
| | - Guangxue Chen
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, Guangzhou 510640, PR China
| | - Minghui He
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, Guangzhou 510640, PR China
| | - Junfei Tian
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, Guangzhou 510640, PR China.
| |
Collapse
|
9
|
Li J, Wang S, Wang F, Wu X, Zhuang X. Environmental separation and enrichment of gold and palladium ions by amino-modified three-dimensional graphene. RSC Adv 2019; 9:2816-2821. [PMID: 35520528 PMCID: PMC9060295 DOI: 10.1039/c8ra10506e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 01/14/2019] [Indexed: 01/16/2023] Open
Abstract
The excellent adsorption properties of three-dimensional graphene (3DG) can be further enhanced by triethylenetetramine modification to increase its adsorption capacity for precious metal ions. Herein, we successfully synthesized an amino-modified 3DG (N-3DG) adsorbent with improved adsorption conditions with regards to pH value, dosage, and adsorption time. Adsorption equilibrium was reached at pH 3 over 120 min. In addition, the theoretical basis for the adsorption of N-3DG is provided by fitting the adsorption isotherm model. The synthesized material was tested in seawater and lake water samples for the adsorption of precious metals, namely Au(iii) and Pd(ii), achieving a recovery rate of 87% to 106% as assessed by inductively coupled plasma mass spectrometry. Thus, N-3DG showed good adsorptivity. The present results indicate that N-3DG materials could have a viable application in environmental and sewage treatment in the near future.
Collapse
Affiliation(s)
- Jing Li
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| | - Shaoxia Wang
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| | - Feng Wang
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| | - Xuran Wu
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| | - Xuming Zhuang
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| |
Collapse
|