1
|
Miyake K, Iwamura A, Fujita K, Takehara T, Suzuki T, Yasukawa N, Nakamura S. Asymmetric Conjugate Addition of Phosphine Sulfides to α-Substituted β-Nitroacrylates Using Cinchona Alkaloid Amide Catalysts. Org Lett 2024; 26:8233-8238. [PMID: 39302210 DOI: 10.1021/acs.orglett.4c02643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Chiral phosphine-containing amino acids are useful motifs in pharmaceutical compounds. In this study, we developed the asymmetric conjugate addition of phosphine sulfides with α-substituted β-nitroacrylates to synthesize phosphine-containing amino acid precursors with chiral tetrasubstituted carbon centers. This method showed a wide substrate scope, and the obtained products were converted into various chiral compounds. The origin of the enantioselectivity was clarified by computational analysis.
Collapse
Affiliation(s)
- Kosei Miyake
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Akane Iwamura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Kazuki Fujita
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Tsunayoshi Takehara
- The Institute of Scientific and Industrial Research Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Takeyuki Suzuki
- The Institute of Scientific and Industrial Research Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Naoki Yasukawa
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Shuichi Nakamura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
2
|
Wang X, Luo Y, Zhao J, Luo S. CPA-catalyzed asymmetric domino thia-Michael/aldol reactions for simultaneous chiral center and axial chirality formation. Org Biomol Chem 2023; 21:6697-6701. [PMID: 37554057 DOI: 10.1039/d3ob01087b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
A highly enantio- and diastereoselective domino thia-Michael/aldol reaction applying 5H-dibenzo[a,c][7]annulen-5-one as a Michael acceptor, catalyzed by a chiral phosphoric acid (CPA), has been developed. The bridged biaryl adduct contains multiple stereogenic centers in the bridging linkage as well as a thermodynamically controlled stereogenic axis. The energy difference between the two atropodiastereomers is about 9.1 kcal mol-1, which accounts for the observed excellent diastereoselectivity (>20 : 1).
Collapse
Affiliation(s)
- Xilong Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China.
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Yu Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China.
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Jiaji Zhao
- School of Medicine and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528400, China.
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China.
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
3
|
Niu C, Du DM. Recent Advances in Organocatalyzed Asymmetric sulfa-Michael Addition Triggered Cascade Reactions. CHEM REC 2023:e202200258. [PMID: 36594608 DOI: 10.1002/tcr.202200258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/14/2022] [Indexed: 01/04/2023]
Abstract
The sulfa-Michael addition reaction is a crucial subset of the Michael addition reaction, and aroused the interest of numerous synthetic biologists and chemists. In particular, sulfa-Michael addition triggered cascade reaction has developed quickly in recent years because it offers an efficient method to construct C-S bonds and other bonds in one approach, which is widely applicable for building chiral pharmaceuticals, their intermediates, and natural compounds. This review emphasizes the recent advancements in sulfa-Michael addition-triggered cascade reactions for the stereoselective synthesis of sulfur-containing compounds, including sulfa-Michael/aldol, sulfa-Michael/Henry, sulfa-Michael/Michael, sulfa-Michael/Mannich and some sulfa-Michael triggered multi-step processes. Moreover, some reaction mechanisms and derivatization experiments are introduced appropriately.
Collapse
Affiliation(s)
- Cheng Niu
- Key Laboratory of Medical Molecule Science & Pharmaceutics Engineering (Ministry of Industry and Information Technology), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Da-Ming Du
- Key Laboratory of Medical Molecule Science & Pharmaceutics Engineering (Ministry of Industry and Information Technology), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| |
Collapse
|
4
|
Liu H, He GC, Zhao CY, Zhang XX, Ji DW, Hu YC, Chen QA. Redox-Divergent Construction of (Dihydro)thiophenes with DMSO. Angew Chem Int Ed Engl 2021; 60:24284-24291. [PMID: 34460141 DOI: 10.1002/anie.202109026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 11/10/2022]
Abstract
Thiophene-based rings are one of the most widely used building blocks for the synthesis of sulfur-containing molecules. Inspired by the redox diversity of these features in nature, we demonstrate herein a redox-divergent construction of dihydrothiophenes, thiophenes, and bromothiophenes from the respective readily available allylic alcohols, dimethyl sulfoxide (DMSO), and HBr. The redox-divergent selectivity could be manipulated mainly by controlling the dosage of DMSO and HBr. Mechanistic studies suggest that DMSO simultaneously acts as an oxidant and a sulfur donor. The synthetic potentials of the products as platform molecules were also demonstrated by various derivatizations, including the preparation of bioactive and functional molecules.
Collapse
Affiliation(s)
- Heng Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gu-Cheng He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao-Yang Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang-Xin Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yan-Cheng Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Redox‐Divergent Construction of (Dihydro)thiophenes with DMSO. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Eder I, Haider V, Zebrowski P, Waser M. Recent Progress in the Asymmetric Syntheses of α‐Heterofunctionalized (Masked) α‐ and β‐Amino Acid Derivatives. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Isabella Eder
- Institute of Organic Chemistry Johannes Kepler University Linz Altenbergerstr. 69 4040 Linz Austria
| | - Victoria Haider
- Institute of Organic Chemistry Johannes Kepler University Linz Altenbergerstr. 69 4040 Linz Austria
| | - Paul Zebrowski
- Institute of Organic Chemistry Johannes Kepler University Linz Altenbergerstr. 69 4040 Linz Austria
| | - Mario Waser
- Institute of Organic Chemistry Johannes Kepler University Linz Altenbergerstr. 69 4040 Linz Austria
| |
Collapse
|
7
|
Zeng HW, Wu PY, Wu HL. Progress in recent development of stereoselective synthesis of β 2-amino acid derivatives from β-nitroacrylate derivatives. Org Biomol Chem 2020; 18:2991-3006. [PMID: 32239073 DOI: 10.1039/d0ob00448k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and properties of β-amino acids have drawn considerable attention owing to their ubiquitous presence in naturally occurring products of biological importance. While β3-amino acids can be readily prepared from α-amino acids via one-carbon homologation, the synthesis of β2-amino acids generally requires multistep efforts. This review focuses on the recent advances in the synthesis of β2-amino acids and their derivatives from substituted β-nitropropionate analogues obtained from the stereoselective transformation of β-nitroacrylates.
Collapse
Affiliation(s)
- Hao-Wei Zeng
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei, Taiwan, Republic of China.
| | - Ping-Yu Wu
- Oleader Technologies Co., Ltd, 1F., No. 8, Aly. 29, Ln 335, Chenggong Rd., Hukou Township 30345, Hsinchu County, Taiwan, Republic of China
| | - Hsyueh-Liang Wu
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei, Taiwan, Republic of China.
| |
Collapse
|