1
|
Yang Y, Li P, Feng H, Zeng R, Li S, Zhang Q. Macrocycle-Based Supramolecular Drug Delivery Systems: A Concise Review. Molecules 2024; 29:3828. [PMID: 39202907 PMCID: PMC11357536 DOI: 10.3390/molecules29163828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Efficient delivery of therapeutic agents to the lesion site or specific cells is an important way to achieve "toxicity reduction and efficacy enhancement". Macrocycles have always provided many novel ideas for drug or gene loading and delivery processes. Specifically, macrocycles represented by crown ethers, cyclodextrins, cucurbit[n]urils, calix[n]arenes, and pillar[n]arenes have unique properties, which are different cavity structures, good biocompatibility, and good stability. Benefited from these diverse properties, a variety of supramolecular drug delivery systems can be designed and constructed to effectively improve the physical and chemical properties of guest molecules as needed. This review provides an outlook on the current application status and main limitations of macrocycles in supramolecular drug delivery systems.
Collapse
Affiliation(s)
- Yanrui Yang
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Pengcheng Li
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Haibo Feng
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Rui Zeng
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Shanshan Li
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Department of Pharmacy, Sichuan Provincial People’s Hospital Chuandong Hospital & Dazhou First People’s Hospital, Dazhou 635000, China
| |
Collapse
|
2
|
Funes M, Tosso RD, Machado ND, Fernández MA, Garro M, Díaz DD, Hikawczuk VJ, Enriz RD. Antinociceptive effect of cyclic and linear diterpenoids as new atypical agonists of κ-opioid receptors obtained from four species of the Baccharis genus, and vehiculated in nanometric niosomes. Fitoterapia 2023; 169:105622. [PMID: 37524126 DOI: 10.1016/j.fitote.2023.105622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
New natural analgesic compounds that act in KORs are important alternatives for potential therapeutical use in medicine. In this work, we report and compare here the antinociceptive activity displayed by cyclic and linear diterpenes, obtained from the genus Baccharis. The antinociceptive activities determined were relatively strong, in comparison whit morphine. The antinociceptive mechanism of action was made through naloxone administration (a non-selective antagonist of opioid receptors). The more active compounds were vehiculized successfully in niosomes at nanometric scale. The observed antinociceptive activity for Bartemidiolide oxide (BARTO), obtain from Baccharis artemisioides, was greater than Flabeloic acid dimer (DACD), the first compound isolated from Baccharis flabellata that was reported possessing antinociceptive effects. We also conducted docking calculations and molecular dynamics simulations, which suggested that the newly identified diterpenes might share the molecular action mechanism reported for Salvinorin A (SalA). Molecular simulations have allowed us to appreciate some subtle differences between molecular interactions of these ligands stabilizing their respective complexes; such information might be useful for designing and searching for new inhibitors of KORs.
Collapse
Affiliation(s)
- Matías Funes
- Pharmacognosy, School of Chemistry, Biochemistry, and Pharmacy, National University of San Luis, Av. Ejército de los Andes 950, 5700 San Luis, Argentina; Multidisciplinary Institute for Biological Research (IMIBIO-CONICET), Av. Ejército de los Andes 950, 5700 San Luis, Argentina.
| | - Rodrigo D Tosso
- Multidisciplinary Institute for Biological Research (IMIBIO-CONICET), Av. Ejército de los Andes 950, 5700 San Luis, Argentina
| | - Noelia D Machado
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA, Argentina; Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA-UNC-CONICET), Avda. Vélez Sársfield 1611, Córdoba X5016GCA, Argentina
| | - Mariana A Fernández
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA, Argentina; Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC-CONICET), Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - María Garro
- Pharmacognosy, School of Chemistry, Biochemistry, and Pharmacy, National University of San Luis, Av. Ejército de los Andes 950, 5700 San Luis, Argentina
| | - David Díaz Díaz
- Departamento de Química Orgánica, Universidad de la Laguna, La Laguna, Spain; Instituto Universitario de Bio-Orgánica Antonio González, Universidad de la Laguna, La Laguna, Spain; Institute of Organic Chemistry, University of Regensburg, Universitätstr. 31, Regensburg 93053, Germany
| | - Virginia Juan Hikawczuk
- Organic Chemistry, School of Chemistry, Biochemistry, and Pharmacy, National University of San Luis, Av. Ejército de los Andes 950, 5700, San Luis, Argentina
| | - Ricardo D Enriz
- Pharmacognosy, School of Chemistry, Biochemistry, and Pharmacy, National University of San Luis, Av. Ejército de los Andes 950, 5700 San Luis, Argentina; Multidisciplinary Institute for Biological Research (IMIBIO-CONICET), Av. Ejército de los Andes 950, 5700 San Luis, Argentina.
| |
Collapse
|
3
|
Oransa HA, Boughdady MF, EL-Sabbagh HM. Novel Mucoadhesive Chitosomes as a Platform for Enhanced Oral Bioavailability of Cinnarizine. Int J Nanomedicine 2022; 17:5641-5660. [PMID: 36452306 PMCID: PMC9704018 DOI: 10.2147/ijn.s384494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/12/2022] [Indexed: 10/05/2024] Open
Abstract
PURPOSE Cinnarizine (CIN) is a class II BSC drug, suffering from erratic bioavailability due to its pH-dependent solubility. It has preferential absorption in the stomach. In this study, new chitosan (CS) coated niosomes of CIN (CIN-loaded chitosomes) have been developed to extend the gastric retention and ameliorate CIN oral bioavailability. METHODS Various CIN-loaded niosomes were fabricated by thin-film hydration technique and fully characterized. Based on the predetermined criteria of low particle size (PS) and high entrapment efficiency percent (EE%), niosomal formulation F1 was selected and further coated with different CS concentrations. The optimized chitosomal formulation (C2) was evaluated through solid state characterization and mucoadhesive efficiency testing. It was also subjected to cytotoxicity study on Caco-2 cells; besides, in vitro drug release, stability and pharmacokinetic studies were assessed. RESULTS The optimized chitosomal formulation (C2) exhibited an EE% of 58.30±2.75%, PS of 440 ±13.03 nm, PDI of 0.335±0.21 and ZP of +28.1±0.10 mv. Solid state characterization results revealed the compatibility between the vesicle components and the entrapment of CIN within niosomal vesicles. C2 formulation demonstrated favorable mucoadhesive efficiency. The cytotoxicity study on Caco-2 cells manifested the safety of the optimized chitosomal formulation (C2) over the free drug. Additionally, it displayed a remarkable sustaining of CIN in vitro release up to 8 h and exhibited a good stability at the refrigerated temperature up to 3 months. In vivo pharmacokinetic assessment revealed that the CIN bioavailability from the optimized chitosomal formulation C2 was enhanced by 2.79 and 1.92 folds compared to the free drug and uncoated niosomal formulation F1, respectively. The priority of the chitosomal formulation (C2) over the niosomal one (F1) was also conferred. CONCLUSION Novel formulation of chitosan coated niosomes (chitosomes) could be presented as a promising platform to improve the oral bioavailability of drugs with narrow absorption window.
Collapse
Affiliation(s)
- Hagar Ahmed Oransa
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia, Egypt
| | - Mariza Fouad Boughdady
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia, Egypt
| | | |
Collapse
|
4
|
Physicochemical and Stability Evaluation of Topical Niosomal Encapsulating Fosinopril/γ-Cyclodextrin Complex for Ocular Delivery. Pharmaceutics 2022; 14:pharmaceutics14061147. [PMID: 35745720 PMCID: PMC9228017 DOI: 10.3390/pharmaceutics14061147] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed to develop a chemically stable niosomal eye drop containing fosinopril (FOS) for lowering intraocular pressure. The effects of cyclodextrin (CD), surfactant types and membrane stabilizer/charged inducers on physiochemical and chemical properties of niosome were evaluated. The pH value, average particle size, size distribution and zeta potentials were within the acceptable range. All niosomal formulations were shown to be slightly hypertonic with low viscosity. Span® 60/dicetyl phosphate niosomes in the presence and absence of γCD were selected as the optimum formulations according to their high %entrapment efficiency and negative zeta potential values as well as controlled release profile. According to ex vivo permeation study, the obtained lowest flux and apparent permeability coefficient values confirmed that FOS/γCD complex was encapsulated within the inner aqueous core of niosome and could be able to protect FOS from its hydrolytic degradation. The in vitro cytotoxicity revealed that niosome entrapped FOS or FOS/γCD formulations were moderate irritation to the eyes. Furthermore, FOS-loaded niosomal preparations exhibited good physical and chemical stabilities especially of those in the presence of γCD, for at least three months under the storage condition of 2–8 °C.
Collapse
|
5
|
Elhabak M, Ibrahim S, Abouelatta SM. Topical delivery of l-ascorbic acid spanlastics for stability enhancement and treatment of UVB induced damaged skin. Drug Deliv 2021; 28:445-453. [PMID: 33620008 PMCID: PMC7909477 DOI: 10.1080/10717544.2021.1886377] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/02/2021] [Indexed: 10/28/2022] Open
Abstract
l-Ascorbic acid (LAA) is considered a powerful antioxidant that protects skin from premature aging. Maintaining the stability of vitamin C remains the biggest challenge in cosmeceuticals. Our main aim is the entrapment of high dose of vitamin C in spanlastic vesicles to provide maximum stability and efficacy. LAA-loaded spanlastics were prepared by ethanol injection method and were characterized for entrapment efficiency (EE%), particles size (PS), polydispersity index (PDI), zeta potential, deformability index (DI) and in vivo skin permeation. Selected spanlastics formula composed of span 60 and tween 60 (5:1) showed highest EE% of 89.77 ± 3.61% (w/w), high deformability of 11.13 ± 1.145 as well as good physical and chemical stability for 6 months. Improved drug penetration into stratum corneum (SC) was obtained from spanlastics compared to topical LAA solution. Quantitative real time PCR revealed that MMP2 and MMP9 levels were significantly suppressed in response to LAA spanlastics treated rats by 30.4% and 65.3%, respectively, when compared to the control group after exposure to UV irradiation. Results were confirmed by western blot analysis. Histopathological study of rat skin after UV irradiation revealed that application of LAA-loaded spanlastics provided the highest skin protection compared to UVB and LAA solution treated group which was evident by the normal thick epidermal morphology and the densely arranged dermal collagen fibers. LAA-loaded spanlastics successfully improved LAA stability, skin permeation and antioxidant protection against skin photodamage.
Collapse
Affiliation(s)
- Mona Elhabak
- Department of Pharmaceutics, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Samar Ibrahim
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Samar M. Abouelatta
- Department of Pharmaceutics, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| |
Collapse
|
6
|
Encapsulation of volatile compounds in liquid media: Fragrances, flavors, and essential oils in commercial formulations. Adv Colloid Interface Sci 2021; 298:102544. [PMID: 34717207 DOI: 10.1016/j.cis.2021.102544] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022]
Abstract
The first marketed example of the application of microcapsules dates back to 1957. Since then, microencapsulation techniques and knowledge have progressed in a plethora of technological fields, and efforts have been directed toward the design of progressively more efficient carriers. The protection of payloads from the exposure to unfavorable environments indeed grants enhanced efficacy, safety, and stability of encapsulated species while allowing for a fine tuning of their release profile and longer lasting beneficial effects. Perfumes or, more generally, active-loaded microcapsules are nowadays present in a very large number of consumer products. Commercial products currently make use of rigid, stable polymer-based microcapsules with excellent release properties. However, this type of microcapsules does not meet certain sustainability requirements such as biocompatibility and biodegradability: the leaking via wastewater contributes to the alarming phenomenon of microplastic pollution with about 4% of total microplastic in the environment. Therefore, there is a need to address new issues which have been emerging in relation to the poor environmental profile of such materials. The progresses in some of the main application fields of microencapsulation, such as household care, toiletries, cosmetics, food, and pesticides are reviewed herein. The main technologies employed in microcapsules production and the mechanisms underlying the release of actives are also discussed. Both the advantages and disadvantages of every technique have been considered to allow a careful choice of the most suitable technique for a specific target application and prepare the ground for novel ideas and approaches for encapsulation strategies that we expect to be proposed within the next years.
Collapse
|
7
|
Machado ND, Gutiérrez G, Matos M, Fernández MA. Preservation of the Antioxidant Capacity of Resveratrol via Encapsulation in Niosomes. Foods 2021; 10:988. [PMID: 33946473 PMCID: PMC8147147 DOI: 10.3390/foods10050988] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
Resveratrol (RSV) is a natural polyphenol which produces several benefits to human health, being the trans-isomer the most bioactive. However, its systemic absorption is limited due to its low water solubility, that reduces the oral bioavailability, and its chemical instability (owing to the trans-cis RSV isomer conversion upon light irradiation). Thus, encapsulation of this bioactive compound is required to protect it from destructive environmental conditions. Here, trans-RSV was encapsulated in food grade nanovesicles formed by Tween 80 and Span 80, with or without the addition of dodecanol (Dod) as membrane stabilizer. The size and shape of niosomes were evaluated by microscopy (TEM) and light scattering. RSV was successfully encapsulated in the vesicular systems (49-57%). The effect of Dod in the membrane bilayer was evaluated on the RSV in vitro release experiments under simulated gastrointestinal conditions. The total antioxidant capacity of the encapsulated polyphenol was measured using radicals' assays (DPPH and ABTS). The niosomes were able to maintain almost the total antioxidant capacity of encapsulated RSV, also preserved the ~85% of trans-RSV, thus offering considerable protection against high energy irradiation. These results make these systems suitable for different applications, particularly for photosensitive compounds.
Collapse
Affiliation(s)
- Noelia D. Machado
- Facultad de Ciencias Químicas, Departamento de Química Orgánica, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA, Argentina;
- Instituto de Investigaciones en Físico-Química de Córdoba, INFIQC-CONICET, Córdoba X5000HUA, Argentina
| | - Gemma Gutiérrez
- Departamento de Ingeniería Química y Tecnología del Medio Ambiente, Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (G.G.); (M.M.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - María Matos
- Departamento de Ingeniería Química y Tecnología del Medio Ambiente, Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (G.G.); (M.M.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - Mariana A. Fernández
- Facultad de Ciencias Químicas, Departamento de Química Orgánica, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA, Argentina;
- Instituto de Investigaciones en Físico-Química de Córdoba, INFIQC-CONICET, Córdoba X5000HUA, Argentina
| |
Collapse
|
8
|
Machado ND, García-Manrique P, Fernández MA, Blanco-López MC, Matos M, Gutiérrez G. Cholesterol free niosome production by microfluidics: Comparative with other conventional methods. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Maestrelli F, Landucci E, De Luca E, Nerli G, Bergonzi MC, Piazzini V, Pellegrini-Giampietro DE, Gullo F, Becchetti A, Tadini-Buoninsegni F, Francesconi O, Nativi C. Niosomal Formulation of a Lipoyl-Carnosine Derivative Targeting TRPA1 Channels in Brain. Pharmaceutics 2019; 11:E669. [PMID: 31835593 PMCID: PMC6956366 DOI: 10.3390/pharmaceutics11120669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 01/08/2023] Open
Abstract
The transient receptor potential akyrin type-1 (TRPA1) is a non-selective cation channel playing a pivotal role in pain sensation and neurogenic inflammation. TRPA1 channels expressed in the central nervous system (CNS) have a critical role in the modulation of cortical spreading depression (CSD), which is a key pathophysiological basis of migraine pain. ADM_09 is a recently developed lipoic acid-based TRPA1 antagonist that is able to revert oxaliplatin-induced neuropathic pain and inflammatory trigeminal allodynia. In this context, aiming at developing drugs that are able to target TRPA1 channels in the CNS and promote an antioxidant effect, permeability across the blood-brain barrier (BBB) represents a central issue. Niosomes are nanovesicles that can be functionalized with specific ligands selectively recognized by transporters expressed on the BBB. In this work, the activity of ADM_09 on neocortex cultures was studied, and an efficient formulation to cross the BBB was developed with the aim of increasing the concentration of ADM_09 into the brain and selectively delivering it to the CNS rapidly after parenteral administration.
Collapse
Affiliation(s)
- Francesca Maestrelli
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Florence, Italy; (E.D.L.); (G.N.); (M.C.B.); (V.P.); (F.T.-B.); (C.N.)
| | - Elisa Landucci
- Department of Health Sciences, Clinical Pharmacology and Oncology Unit, University of Florence, 50139 Florence, Italy; (E.L.); (D.E.P.-G.)
| | - Enrico De Luca
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Florence, Italy; (E.D.L.); (G.N.); (M.C.B.); (V.P.); (F.T.-B.); (C.N.)
| | - Giulia Nerli
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Florence, Italy; (E.D.L.); (G.N.); (M.C.B.); (V.P.); (F.T.-B.); (C.N.)
| | - Maria Camilla Bergonzi
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Florence, Italy; (E.D.L.); (G.N.); (M.C.B.); (V.P.); (F.T.-B.); (C.N.)
| | - Vieri Piazzini
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Florence, Italy; (E.D.L.); (G.N.); (M.C.B.); (V.P.); (F.T.-B.); (C.N.)
| | - Domenico E. Pellegrini-Giampietro
- Department of Health Sciences, Clinical Pharmacology and Oncology Unit, University of Florence, 50139 Florence, Italy; (E.L.); (D.E.P.-G.)
| | - Francesca Gullo
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (F.G.); (A.B.)
| | - Andrea Becchetti
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (F.G.); (A.B.)
| | - Francesco Tadini-Buoninsegni
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Florence, Italy; (E.D.L.); (G.N.); (M.C.B.); (V.P.); (F.T.-B.); (C.N.)
| | - Oscar Francesconi
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Florence, Italy; (E.D.L.); (G.N.); (M.C.B.); (V.P.); (F.T.-B.); (C.N.)
| | - Cristina Nativi
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Florence, Italy; (E.D.L.); (G.N.); (M.C.B.); (V.P.); (F.T.-B.); (C.N.)
| |
Collapse
|
10
|
García-Manrique P, Machado ND, Fernández MA, Blanco-López MC, Matos M, Gutiérrez G. Effect of drug molecular weight on niosomes size and encapsulation efficiency. Colloids Surf B Biointerfaces 2019; 186:110711. [PMID: 31864114 DOI: 10.1016/j.colsurfb.2019.110711] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/27/2022]
Abstract
Encapsulation into nanocarriers, such as niosomes, is a promising way to protect them from degradation, and allow controll and target delivery of bioactive compounds. For biotechnological applications, a tight control of particle size with acceptable encapsulation efficiencies (EE) is a technological challenge, especially for hydrophilic compounds due to its capability to diffuse across biological barriers. Niosomes formulated with mixture of surfactants represent promising nanocarriers due to the advantages of non-ionic surfactants, such as low cost, versatility and enhanced physico-chemical properties. In this work, the effect of both, composition of the hydrating solution and molecular weight of the loaded compound, on the particle size and EE of niosomes prepared by using the thin film hydration method was studied. Particularly, mili-Q water, glycerol solution and PEG-400 solution were tested for niosomes formulated with Span®80-Tween®80 with/without dodecanol as membrane stabilizer. It was found that particle size highly depends on hydration media composition and an interaction with compound MW could exist. Larger vesicles results in an increase in EE, which could be purely related with physical aspects such as vesicle loading volume capacity. The effect of hydration solution composition could be related with their ability to change the bilayer packing and physical properties, as observed by differential scanning calorimetry. Finally, it was possible to compare the suitability of dialysis and gel filtration as purification methods, demonstrating that gel filtration is not an adequate purification method when viscous solutions are used, since they could affect the particle vesicles retention and hence EE measurements would be misrepresentative.
Collapse
Affiliation(s)
- Pablo García-Manrique
- Department of Physical and Analytical Chemistry, University of Oviedo, Spain; Department of Chemical Engineering and Environmental Technology, University of Oviedo, Spain
| | - Noelia D Machado
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), INFIQC, Córdoba, Argentina
| | - Mariana A Fernández
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), INFIQC, Córdoba, Argentina
| | | | - María Matos
- Department of Chemical Engineering and Environmental Technology, University of Oviedo, Spain
| | - Gemma Gutiérrez
- Department of Chemical Engineering and Environmental Technology, University of Oviedo, Spain.
| |
Collapse
|
11
|
Lu B, Huang Y, Chen Z, Ye J, Xu H, Chen W, Long X. Niosomal Nanocarriers for Enhanced Skin Delivery of Quercetin with Functions of Anti-Tyrosinase and Antioxidant. Molecules 2019; 24:E2322. [PMID: 31238562 PMCID: PMC6632015 DOI: 10.3390/molecules24122322] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/12/2019] [Accepted: 06/21/2019] [Indexed: 12/02/2022] Open
Abstract
This study aimed to screen an effective flavonoid with promising whitening and antioxidant capacities, and design flavonoid-loaded niosomes to improve its solubility, stability, and penetration. In vitro anti-tyrosinase and 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging experiments were conducted to investigate the whitening and antioxidant capacities of several flavonoids, including quercetin, morin, festin, myricetin, rutin, and breviscapine. The conductivity, viscosity, and particle size of Span60-RH40-based formulation of nonionic surfactant vesicles (niosomes) with different mass ratios were studied to determine the most appropriate formulation. Drug-loaded niosomes were characterized for size, zeta potential, morphology, and entrapment efficiency. The photostability, solubility, release behavior, ex vivo drug penetration, and skin retention were also studied. The results showed that quercetin has considerable whitening and antioxidant capacities and Span60-RH40 at a mass ratio of 9:11 forms spherical or oval niosomes of 97.6 ± 3.1 nm with a zeta potential range of 31.1 ± 0.9 mV, and drug entrapment efficiency as high as 87.3 ± 1.6%. Niosomes remarkably improved the solubility and photostability of quercetin. Furthermore, compared to quercetin solution, quercetin-niosomes had the advantages of sustained release and improved transdermal penetration, with skin retention 2.95 times higher than quercetin solution.
Collapse
Affiliation(s)
- Banyi Lu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (B.L.); (Y.H.); (H.X.)
| | - Yanting Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (B.L.); (Y.H.); (H.X.)
| | - Zhongyun Chen
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Z.C.); (J.Y.)
| | - Jingyi Ye
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Z.C.); (J.Y.)
| | - Hongyu Xu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (B.L.); (Y.H.); (H.X.)
| | - Wenrong Chen
- Research and Development Center, Sirio Pharma Co., Ltd, Shantou 515041, China
| | - Xiaoying Long
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (B.L.); (Y.H.); (H.X.)
- Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangzhou 510006, China
| |
Collapse
|
12
|
Fernández MA, Silva OF, Vico RV, de Rossi RH. Complex systems that incorporate cyclodextrins to get materials for some specific applications. Carbohydr Res 2019; 480:12-34. [PMID: 31158527 DOI: 10.1016/j.carres.2019.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/06/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
Cyclodextrins (CDs) are a family of biodegradable cyclic hydrocarbons composed of α-(1,4) linked glucopyranose subunits, the more common containing 6, 7 or 8 glucose units are named α, β and γ-cyclodextrins respectively. Since the discovery of CDs, they have attracted interest among scientists and the first studies were about the properties of the native compounds and in particular their use as catalysts of organic reactions. Characteristics features of different types of cyclodextrins stimulated investigation in different areas of research, due to its non-toxic and non-inmunogenic properties and also to the development of an improved industrial production. In this way, many materials with important properties have been developed. This mini-review will focus on chemical systems that use cyclodextrins, whatever linked covalently or mediated by the non covalent interactions, to build complex systems developed mainly during the last five years.
Collapse
Affiliation(s)
- Mariana A Fernández
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| | - O Fernando Silva
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Raquel V Vico
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Rita H de Rossi
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| |
Collapse
|
13
|
Machado ND, Fernández MA, Häring M, Saldías C, Díaz DD. Niosomes encapsulated in biohydrogels for tunable delivery of phytoalexin resveratrol. RSC Adv 2019; 9:7601-7609. [PMID: 35521173 PMCID: PMC9061210 DOI: 10.1039/c8ra09655d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/21/2019] [Indexed: 11/21/2022] Open
Abstract
A series of biohydrogels based on mixtures of kappa-carrageenan (κ-carrageenan, κ-C) and gelatin were evaluated as potential soft delivery vehicles for the encapsulation and subsequent release of non-ionic surfactant vesicles (niosomes) loaded with resveratrol (RSV). The niosomes were prepared using a mixture of amphiphilic lipids Tween 80 and Span 80 in water. The results showed that RSV-niosomes did not significantly affect the hydrogelation properties of the biopolymer mixture. Moreover, in vitro drug release experiments from biohydrogels containing RSV-niosomes were successfully carried out under simulated gastrointestinal conditions. The RSV-niosomal liberation profiles from hydrogels were fitted using first order kinetics, Higuchi, Korsmeyer-Peppas and Weibull drug release models, showing the prevalence of diffusion mechanisms in each case. In addition, the RSV release was easily tuned by adjusting the total concentration of κ-C : gelatin. Interestingly, the niosomal-hydrogel system was also found to prevent the trans-to-cis photoisomerization of RSV.
Collapse
Affiliation(s)
- Noelia D Machado
- Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC-CONICET), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria X5000HUA Córdoba Argentina
- Institute of Organic Chemistry, University of Regensburg Universitätstrasse. 31 93040 Regensburg Germany
| | - Mariana A Fernández
- Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC-CONICET), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Marleen Häring
- Institute of Organic Chemistry, University of Regensburg Universitätstrasse. 31 93040 Regensburg Germany
| | - César Saldías
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile Macul Santiago Chile
| | - David Díaz Díaz
- Institute of Organic Chemistry, University of Regensburg Universitätstrasse. 31 93040 Regensburg Germany
- Instituto de Productos Naturales y Agrobiología del CSIC Avda. Astrofísico Francisco Sánchez 3 38206 La Laguna Tenerife Spain
| |
Collapse
|