1
|
Bakhtiari A, Kähler CJ. Enhanced particle separation through ultrasonically-induced microbubble streaming for automated size-selective particle depletion. RSC Adv 2024; 14:2226-2234. [PMID: 38213973 PMCID: PMC10777360 DOI: 10.1039/d3ra08038b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Abstract
In this study, we present an automated method for achieving Size-Selective Particle Depletion in microchannels. This technique is notable for its label-free, sheath-free, and cost-effective attributes. It combines continuous Poiseuille flow with microbubble streaming to enable the manipulation of particles in an automatic or semi-automatic manner at periodic intervals. Larger particles are retained in proximity to the microbubble, with the option for subsequent eviction through a designated waste exit or their accumulation within a collection chamber for future analysis or manipulation. Unlike many conventional methods, our approach keeps the target particles in the vortices near the microbubble while the primary fluid flows continuously through the microchannel. Subsequently, these particles are ejected in just a few milliseconds, preserving the primary fluid and significantly reducing fluid wastage. We conducted an analysis covering multiple critical facets of the study. This included a rigorous statistical examination, flow characterization using volumetric micro PTV, high-frequency micro PTV for observing flow field transitions, evaluating the system's particle trapping capabilities across different sizes with a proprietary algorithm, and investigating the z-axis distribution of both incoming and escaped particles using volumetric micro PTV. The invaluable insights gleaned from this data played a pivotal role in refining the system and optimizing its operational parameters to achieve peak efficiency across various conditions, encompassing varying particle sizes, flow rates, and seeding densities.
Collapse
Affiliation(s)
- Amirabas Bakhtiari
- Institute for Fluid Mechanics and Aerodynamics, Bundeswehr University Munich 85577 Neubiberg Germany
| | - Christian J Kähler
- Institute for Fluid Mechanics and Aerodynamics, Bundeswehr University Munich 85577 Neubiberg Germany
| |
Collapse
|
2
|
Geng W, Liu Y, Yu N, Qiao X, Ji M, Niu Y, Niu L, Fu W, Zhang H, Bi K, Chou X. An ultra-compact acoustofluidic device based on the narrow-path travelling surface acoustic wave (np-TSAW) for label-free isolation of living circulating tumor cells. Anal Chim Acta 2023; 1255:341138. [PMID: 37032055 DOI: 10.1016/j.aca.2023.341138] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/10/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Obtaining highly purified intact living cells from complex environments has been a challenge, such as the isolation of circulating tumor cells (CTCs) from blood. In this work, we demonstrated an acoustic-based ultra-compact device for cell sorting, with a chip size of less than 2 × 1.5 cm2. This single actuator device allows non-invasive and label-free isolation of living cells, offering greater flexibility and applicability. The device performance was optimized with different-sized polystyrene (PS) particles and blood cells spiked with cancer cells. Using the narrow-path travelling surface acoustic wave (np-TSAW), precise isolation of 10 μm particles from a complex mixture of particles (5, 10, 20 μm) and separation of 8 μm and 10 μm particles was achieved. The purified collection of 10 μm particles with high separation efficiency (98.75%) and high purity (98.1%) was achieved by optimizing the input voltage. Further, we investigated the isolation and purification of CTCs (MCF-7, human breast cancer cells) from blood cells with isolation efficiency exceeding 98% and purity reaching 93%. Viabilities of the CTCs harvested from target-outlet were all higher than 97% after culturing for 24, 48, and 72 h, showing good proliferation ability. This novel ultra-miniaturized microfluidic chip demonstrates the ability to sorting cells with high-purity and label-free, providing an attractive miniaturized system alternative to traditional sorting methods.
Collapse
|
3
|
Zhou Z, Chen Y, Zhu S, Liu L, Ni Z, Xiang N. Inertial microfluidics for high-throughput cell analysis and detection: a review. Analyst 2021; 146:6064-6083. [PMID: 34490431 DOI: 10.1039/d1an00983d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since it was first proposed in 2007, inertial microfluidics has been extensively studied in terms of theory, design, fabrication, and application. In recent years, with the rapid development of microfabrication technologies, a variety of channel structures that can focus, concentrate, separate, and capture bioparticles or fluids have been designed and manufactured to extend the range of potential biomedical applications of inertial microfluidics. Due to the advantages of high throughput, simplicity, and low device cost, inertial microfluidics is a promising candidate for rapid sample processing, especially for large-volume samples with low-abundance targets. As an approach to cellular sample pretreatment, inertial microfluidics has been widely employed to ensure downstream cell analysis and detection. In this review, a comprehensive summary of the application of inertial microfluidics for high-throughput cell analysis and detection is presented. According to application areas, the recent advances can be sorted into label-free cell mechanical phenotyping, sheathless flow cytometric counting, electrical impedance cytometer, high-throughput cellular image analysis, and other methods. Finally, the challenges and prospects of inertial microfluidics for cell analysis and detection are summarized.
Collapse
Affiliation(s)
- Zheng Zhou
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Yao Chen
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Shu Zhu
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Linbo Liu
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
4
|
Affiliation(s)
- Malgorzata A. Witek
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66044, United States
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66044, United States
- Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ian M. Freed
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66044, United States
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66044, United States
| | - Steven A. Soper
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66044, United States
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66044, United States
- Department of Mechanical Engineering, The University of Kansas, Lawrence, Kansas 66044, United States
- Bioengineering Program, The University of Kansas, Lawrence, Kansas 66044, United States
| |
Collapse
|
5
|
Xue M, Xiang A, Guo Y, Wang L, Wang R, Wang W, Ji G, Lu Z. Dynamic Halbach array magnet integrated microfluidic system for the continuous-flow separation of rare tumor cells. RSC Adv 2019; 9:38496-38504. [PMID: 35540230 PMCID: PMC9075830 DOI: 10.1039/c9ra08285a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/08/2019] [Indexed: 01/18/2023] Open
Abstract
Circulating tumor cells (CTCs), the most representative rare cells in peripheral blood, have received great attention due to their clinical utility in liquid biopsy. The downstream analysis of intact CTCs isolated from peripheral blood provides important clinical information for personalized medicine. However, current CTC isolation and detection methods have been challenged by their extreme rarity and heterogeneity. In this study, we developed a novel microfluidic system with a continuously moving Halbach array magnet (dHAMI microfluidic system) for negative isolation CTCs from whole blood, which aimed to capture non-target white blood cells (WBCs) and elute target CTCs. The dynamic and continuous movement of the Halbach array magnet generated a continuous magnetic force acting on the magnetic bead-labelled WBCs in the continuous-flow fluid to negatively exclude the WBCs from the CTCs. Furthermore, the continuously moving magnetic field effectively eliminated the effect of magnetic bead aggregation on the fluid flow to realize the continuous-flow separation of the CTCs without a sample loading volume limitation. The experimental procedure for CTC negative isolation using the dHAMI microfluidic system could be completed within 40 min. Under the optimized experimental conditions of the dHAMI microfluidic system, including the flow rate and concentration of the immunomagnetic bead, the average CTC capture rate over a range of spiked cell numbers (50–1000 cancer cells per mL) was up to 91.6% at a flow rate of 100 μL min−1. Finally, the CTCs were successfully detected in 10 of 10 (100%) blood samples from patients with cancer. Therefore, the dHAMI microfluidic system could effectively isolate intact and heterogeneous CTCs for downstream cellular and molecular analyses, and this robust microfluidic platform with an excellent magnetic manipulation performance also has great application potential for the separation of other rare cells. We develop a dynamic Halbach array magnet integrated microfluidic system for continuous-flow separation of circulating tumor cells from whole blood.![]()
Collapse
Affiliation(s)
- Mei Xue
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061 Shaanxi People's Republic of China
| | - An Xiang
- Department of Biopharmaceutics, School of Pharmacy, Air Force Medical University (The Fourth Military Medical University) Xi'an 710032 Shaanxi People's Republic of China
| | - Yanhai Guo
- Department of Biopharmaceutics, School of Pharmacy, Air Force Medical University (The Fourth Military Medical University) Xi'an 710032 Shaanxi People's Republic of China
| | - Li Wang
- Department of Biopharmaceutics, School of Pharmacy, Air Force Medical University (The Fourth Military Medical University) Xi'an 710032 Shaanxi People's Republic of China
| | - Rou Wang
- Department of Biopharmaceutics, School of Pharmacy, Air Force Medical University (The Fourth Military Medical University) Xi'an 710032 Shaanxi People's Republic of China
| | - Wenwen Wang
- Department of Biopharmaceutics, School of Pharmacy, Air Force Medical University (The Fourth Military Medical University) Xi'an 710032 Shaanxi People's Republic of China
| | - Gang Ji
- Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University (The Fourth Military Medical University) Xi'an 710032 Shaanxi People's Republic of China
| | - Zifan Lu
- Department of Biopharmaceutics, School of Pharmacy, Air Force Medical University (The Fourth Military Medical University) Xi'an 710032 Shaanxi People's Republic of China
| |
Collapse
|