1
|
Murphy PV, Dhara A, Fitzgerald LS, Hever E, Konda S, Mandal K. Small lectin ligands as a basis for applications in glycoscience and glycomedicine. Chem Soc Rev 2024; 53:9428-9445. [PMID: 39162695 DOI: 10.1039/d4cs00642a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Glycan recognition by lectins mediates important biological events. This Tutorial Review aims to introduce lectin-ligand interactions and show how these molecular recognition events inspire innovations such as: (i) glycomimetic ligands; (ii) multivalent ligand agonists/antagonists; (iii) ligands for precision delivery of therapies to cells, where therapies include vaccines, siRNA and LYTACs (iv) development of diagnostics. A small number of case studies are selected to demonstrate principles for development of new ligands for applications inspired by knowledge of natural glycan ligand structure and function.
Collapse
Affiliation(s)
- Paul V Murphy
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
- SSPC, SFI Research Centre for Pharmaceuticals, Galway, H91TK33, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, University Road, Galway, H91TK33, Ireland
| | - Ashis Dhara
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
- SSPC, SFI Research Centre for Pharmaceuticals, Galway, H91TK33, Ireland
| | - Liam S Fitzgerald
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
- SSPC, SFI Research Centre for Pharmaceuticals, Galway, H91TK33, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, University Road, Galway, H91TK33, Ireland
| | - Eoin Hever
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
| | - Saidulu Konda
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
| | - Kishan Mandal
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
| |
Collapse
|
2
|
Manning JC, Baldoneschi V, Romero-Hernández LL, Pichler KM, GarcÍa Caballero G, André S, Kutzner TJ, Ludwig AK, Zullo V, Richichi B, Windhager R, Kaltner H, Toegel S, Gabius HJ, Murphy PV, Nativi C. Targeting osteoarthritis-associated galectins and an induced effector class by a ditopic bifunctional reagent: Impact of its glycan part on binding measured in the tissue context. Bioorg Med Chem 2022; 75:117068. [PMID: 36327696 DOI: 10.1016/j.bmc.2022.117068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/07/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022]
Abstract
Pairing glycans with tissue lectins controls multiple effector pathways in (patho)physiology. A clinically relevant example is the prodegradative activity of galectins-1 and -3 (Gal-1 and -3) in the progression of osteoarthritis (OA) via matrix metalloproteinases (MMPs), especially MMP-13. The design of heterobifunctional inhibitors that can block galectin binding and MMPs both directly and by preventing their galectin-dependent induction selectively offers a perspective to dissect the roles of lectins and proteolytic enzymes. We describe the synthesis of such a reagent with a bivalent galectin ligand connected to an MMP inhibitor and of two tetravalent glycoclusters with a subtle change in headgroup presentation for further elucidation of influence on ligand binding. Testing was performed on clinical material with mixtures of galectins as occurring in vivo, using sections of fixed tissue. Two-colour fluorescence microscopy monitored binding to the cellular glycome after optimization of experimental parameters. In the presence of the inhibitor, galectin binding to OA specimens was significantly reduced. These results open the perspective to examine the inhibitory capacity of custom-made ditopic compounds on binding of lectins in mixtures using sections of clinical material with known impact of galectins and MMPs on disease progression.
Collapse
Affiliation(s)
- Joachim C Manning
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Lena-Christ-Str. 48, 82152 Planegg, Germany
| | - Veronica Baldoneschi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia, 3-13, Sesto Fiorentino, Florence 50019, Italy
| | - Laura L Romero-Hernández
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway H91 TK33, Ireland
| | - Katharina M Pichler
- Karl Chiari Lab for Orthopedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Gabriel GarcÍa Caballero
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Lena-Christ-Str. 48, 82152 Planegg, Germany
| | - Sabine André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Lena-Christ-Str. 48, 82152 Planegg, Germany
| | - Tanja J Kutzner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Lena-Christ-Str. 48, 82152 Planegg, Germany
| | - Anna-Kristin Ludwig
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Lena-Christ-Str. 48, 82152 Planegg, Germany
| | - Valerio Zullo
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Moruzzi 13, Pisa 56124, Italy
| | - Barbara Richichi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia, 3-13, Sesto Fiorentino, Florence 50019, Italy
| | - Reinhard Windhager
- Karl Chiari Lab for Orthopedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Lena-Christ-Str. 48, 82152 Planegg, Germany
| | - Stefan Toegel
- Karl Chiari Lab for Orthopedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Arthritis and Rehabilitation, 1090 Vienna, Austria
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Lena-Christ-Str. 48, 82152 Planegg, Germany
| | - Paul V Murphy
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway H91 TK33, Ireland; SSPC - Science Foundation Ireland Research Centre for Pharmaceuticals, CÚRAM - Science Foundation Ireland Research Centre for Medical Devices, School of Biological and Chemical Sciences, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland.
| | - Cristina Nativi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia, 3-13, Sesto Fiorentino, Florence 50019, Italy; CeRM, University of Florence, via L. Sacconi, 6, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|
3
|
García Caballero G, Manning JC, Gabba A, Beckwith D, FitzGerald FG, Kutzner TJ, Ludwig AK, Kaltner H, Murphy PV, Cudic M, Gabius HJ. Exploring the Galectin Network by Light and Fluorescence Microscopy. Methods Mol Biol 2022; 2442:307-338. [PMID: 35320533 DOI: 10.1007/978-1-0716-2055-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dynamic changes of a cell's glycophenotype are increasingly interpreted as shifts in the capacity to interact with tissue (endogenous) lectins. The status of glycan branching or chain length (e.g., core 1 vs core 2 mucin-type O-glycans and polyLacNAc additions) as well as of sialylation/sulfation has been delineated to convey signals. They are "read" by galectins, for example regulating lattice formation on the membrane and cell growth. Owing to the discovery of the possibility that these effectors act in networks physiologically resulting in functional antagonism or cooperation, their detection and distribution profiling need to be expanded from an individual (single) protein to the-at best-entire family. How to work with non-cross-reactive antibodies and with the labeled tissue-derived proteins (used as probes) is exemplarily documented for chicken and human galectins including typical activity and specificity controls. This description intends to inspire the systematic (network) study of members of a lectin family and also the application of tissue proteins beyond a single lectin category in lectin histochemistry.
Collapse
Affiliation(s)
- Gabriel García Caballero
- Faculty of Veterinary Medicine, Institute of Physiological Chemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Joachim C Manning
- Faculty of Veterinary Medicine, Institute of Physiological Chemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Adele Gabba
- School of Chemistry, National University of Ireland, Galway, Ireland
| | - Donella Beckwith
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, USA
| | - Forrest G FitzGerald
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, USA
| | - Tanja J Kutzner
- Faculty of Veterinary Medicine, Institute of Physiological Chemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Anna-Kristin Ludwig
- Faculty of Veterinary Medicine, Institute of Physiological Chemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Herbert Kaltner
- Faculty of Veterinary Medicine, Institute of Physiological Chemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Paul V Murphy
- School of Chemistry, National University of Ireland, Galway, Ireland
| | - Mare Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, USA
| | - Hans-Joachim Gabius
- Faculty of Veterinary Medicine, Institute of Physiological Chemistry, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
4
|
Gabba A, Bogucka A, Luz JG, Diniz A, Coelho H, Corzana F, Cañada FJ, Marcelo F, Murphy PV, Birrane G. Crystal Structure of the Carbohydrate Recognition Domain of the Human Macrophage Galactose C-Type Lectin Bound to GalNAc and the Tumor-Associated Tn Antigen. Biochemistry 2021; 60:1327-1336. [PMID: 33724805 DOI: 10.1021/acs.biochem.1c00009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The human macrophage galactose lectin (MGL) is an endocytic type II transmembrane receptor expressed on immature monocyte-derived dendritic cells and activated macrophages and plays a role in modulating the immune system in response to infections and cancer. MGL contains an extracellular calcium-dependent (C-type) carbohydrate recognition domain (CRD) that specifically binds terminal N-acetylgalactosamine glycan residues such as the Tn and sialyl-Tn antigens found on tumor cells, as well as other N- and O-glycans displayed on certain viruses and parasites. Even though the glycan specificity of MGL is known and several binding glycoproteins have been identified, the molecular basis for substrate recognition has remained elusive due to the lack of high-resolution structures. Here we present crystal structures of the MGL CRD at near endosomal pH and in several complexes, which reveal details of the interactions with the natural ligand, GalNAc, the cancer-associated Tn-Ser antigen, and a synthetic GalNAc mimetic ligand. Like the asialoglycoprotein receptor, additional calcium atoms are present and contribute to stabilization of the MGL CRD fold. The structure provides the molecular basis for preferential binding of N-acetylgalactosamine over galactose and prompted the re-evaluation of the binding modes previously proposed in solution. Saturation transfer difference nuclear magnetic resonance data acquired using the MGL CRD and interpreted using the crystal structure indicate a single binding mode for GalNAc in solution. Models of MGL1 and MGL2, the mouse homologues of MGL, explain how these proteins might recognize LewisX and GalNAc, respectively.
Collapse
MESH Headings
- Antigens, Tumor-Associated, Carbohydrate/metabolism
- Antigens, Tumor-Associated, Carbohydrate/chemistry
- Antigens, Tumor-Associated, Carbohydrate/immunology
- Humans
- Lectins, C-Type/chemistry
- Lectins, C-Type/metabolism
- Acetylgalactosamine/metabolism
- Acetylgalactosamine/chemistry
- Crystallography, X-Ray
- Models, Molecular
- Protein Domains
- Binding Sites
- Protein Binding
- Animals
Collapse
Affiliation(s)
- Adele Gabba
- Division of Experimental Medicine, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, United States
- School of Chemistry, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Agnieszka Bogucka
- Division of Experimental Medicine, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, United States
- School of Chemistry, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - John G Luz
- Division of Experimental Medicine, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Ana Diniz
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Helena Coelho
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Francisco Corzana
- Departamento de Química, Centro de Investigación en Síntesis Química Universidad de La Rioja, 26006 Logroño, Spain
| | - Francisco Javier Cañada
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Avda Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Filipa Marcelo
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Paul V Murphy
- School of Chemistry, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Gabriel Birrane
- Division of Experimental Medicine, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
5
|
Beckwith DM, FitzGerald FG, Rodriguez Benavente MC, Mercer ER, Ludwig AK, Michalak M, Kaltner H, Kopitz J, Gabius HJ, Cudic M. Calorimetric Analysis of the Interplay between Synthetic Tn Antigen-Presenting MUC1 Glycopeptides and Human Macrophage Galactose-Type Lectin. Biochemistry 2021; 60:547-558. [PMID: 33560106 PMCID: PMC8269692 DOI: 10.1021/acs.biochem.0c00942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/31/2021] [Indexed: 12/25/2022]
Abstract
Human macrophage galactose-type lectin (hMGL, HML, CD301, CLEC10A), a C-type lectin expressed by dendritic cells and macrophages, is a receptor for N-acetylgalactosamine α-linked to serine/threonine residues (Tn antigen, CD175) and its α2,6-sialylated derivative (sTn, CD175s). Because these two epitopes are among malignant cell glycan displays, particularly when presented by mucin-1 (MUC1), assessing the influence of the site and frequency of glycosylation on lectin recognition will identify determinants governing this interplay. Thus, chemical synthesis of the tandem-repeat O-glycan acceptor region of MUC1 and site-specific threonine glycosylation in all permutations were carried out. Isothermal titration calorimetry (ITC) analysis of the binding of hMGL to this library of MUC1 glycopeptides revealed an enthalpy-driven process and an affinity enhancement of an order of magnitude with an increasing glycan count from 6-8 μM for monoglycosylated peptides to 0.6 μM for triglycosylated peptide. ITC measurements performed in D2O permitted further exploration of the solvation dynamics during binding. A shift in enthalpy-entropy compensation and contact position-specific effects with the likely involvement of the peptide surroundings were detected. KinITC analysis revealed a prolonged lifetime of the lectin-glycan complex with increasing glycan valency and with a change in the solvent to D2O.
Collapse
Affiliation(s)
- Donella M. Beckwith
- Department of Chemistry and Biochemistry, Charles E.
Schmidt College of Science, Florida Atlantic University, Boca
Raton, Florida 33431, United States
| | - Forrest G. FitzGerald
- Department of Chemistry and Biochemistry, Charles E.
Schmidt College of Science, Florida Atlantic University, Boca
Raton, Florida 33431, United States
| | - Maria C. Rodriguez Benavente
- Department of Chemistry and Biochemistry, Charles E.
Schmidt College of Science, Florida Atlantic University, Boca
Raton, Florida 33431, United States
| | - Elizabeth R. Mercer
- Department of Chemistry and Biochemistry, Charles E.
Schmidt College of Science, Florida Atlantic University, Boca
Raton, Florida 33431, United States
| | - Anna-Kristin Ludwig
- Ludwig-Maximilians-University
Munich, Institute of Physiological Chemistry, Faculty of Veterinary
Medicine, Veterinärstrasse 13, 80539 Munich, Germany
| | - Malwina Michalak
- Department of Applied Tumor Biology, Institute of
Pathology, Medical School of the Ruprecht-Karls-University
Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg,
Germany
| | - Herbert Kaltner
- Ludwig-Maximilians-University
Munich, Institute of Physiological Chemistry, Faculty of Veterinary
Medicine, Veterinärstrasse 13, 80539 Munich, Germany
| | - Jürgen Kopitz
- Department of Applied Tumor Biology, Institute of
Pathology, Medical School of the Ruprecht-Karls-University
Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg,
Germany
| | - Hans-Joachim Gabius
- Ludwig-Maximilians-University
Munich, Institute of Physiological Chemistry, Faculty of Veterinary
Medicine, Veterinärstrasse 13, 80539 Munich, Germany
| | - Maré Cudic
- Department of Chemistry and Biochemistry, Charles E.
Schmidt College of Science, Florida Atlantic University, Boca
Raton, Florida 33431, United States
| |
Collapse
|
6
|
Martínez JD, Manzano AI, Calviño E, Diego AD, Rodriguez de Francisco B, Romanò C, Oscarson S, Millet O, Gabius HJ, Jiménez-Barbero J, Cañada FJ. Fluorinated Carbohydrates as Lectin Ligands: Simultaneous Screening of a Monosaccharide Library and Chemical Mapping by 19F NMR Spectroscopy. J Org Chem 2020; 85:16072-16081. [PMID: 33258593 PMCID: PMC7773211 DOI: 10.1021/acs.joc.0c01830] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Indexed: 02/06/2023]
Abstract
Molecular recognition of carbohydrates is a key step in essential biological processes. Carbohydrate receptors can distinguish monosaccharides even if they only differ in a single aspect of the orientation of the hydroxyl groups or harbor subtle chemical modifications. Hydroxyl-by-fluorine substitution has proven its merits for chemically mapping the importance of hydroxyl groups in carbohydrate-receptor interactions. 19F NMR spectroscopy could thus be adapted to allow contact mapping together with screening in compound mixtures. Using a library of fluorinated glucose (Glc), mannose (Man), and galactose (Gal) derived by systematically exchanging every hydroxyl group by a fluorine atom, we developed a strategy combining chemical mapping and 19F NMR T2 filtering-based screening. By testing this strategy on the proof-of-principle level with a library of 13 fluorinated monosaccharides to a set of three carbohydrate receptors of diverse origin, i.e. the human macrophage galactose-type lectin, a plant lectin, Pisum sativum agglutinin, and the bacterial Gal-/Glc-binding protein from Escherichia coli, it became possible to simultaneously define their monosaccharide selectivity and identify the essential hydroxyls for interaction.
Collapse
Affiliation(s)
- J. Daniel Martínez
- CIC
bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology Park, Building 800, 48160 Derio, Spain
| | - Ana I. Manzano
- Centro
de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Eva Calviño
- Centro
de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana de Diego
- Centro
de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | - Cecilia Romanò
- Centre
for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stefan Oscarson
- Centre
for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Oscar Millet
- CIC
bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology Park, Building 800, 48160 Derio, Spain
| | - Hans-Joachim Gabius
- Institute
of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| | - Jesús Jiménez-Barbero
- CIC
bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology Park, Building 800, 48160 Derio, Spain
- Ikerbasque,
Basque Foundation for Science, 48009 Bilbao, Spain
- Department
of Organic Chemistry II, Faculty of Science and Technology, UPV-EHU, 48940 Leioa, Spain
| | - Francisco J. Cañada
- Centro
de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
- Centro
de Investigación Biomédica en Red-Enfermedades Respiratorias
(CIBERES), Avda Monforte
de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
7
|
Pietrzyk-Brzezinska AJ, Bujacz A. H-type lectins - Structural characteristics and their applications in diagnostics, analytics and drug delivery. Int J Biol Macromol 2020; 152:735-747. [PMID: 32119947 DOI: 10.1016/j.ijbiomac.2020.02.320] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022]
Abstract
Lectins are ubiquitous carbohydrate-binding proteins that interact with sugar moieties in a highly specific manner. H-type lectins represent a new group of lectins that were identified in invertebrates. These lectins share structural homology and bind mainly to N-acetylgalactosamine (GalNAc). Recent structural studies on the H-type lectins provided a detailed description of the GalNAc-lectin interaction that is already exploited in a number of biomedical applications. Two members of the H-type lectin family, Helix pomatia agglutinin (HPA) and Helix aspersa agglutinin (HAA), have already been extensively used in many diagnostic tests due their ability to specifically recognize GalNAc. This ability is especially important because aberrant glycosylation patterns of proteins expressed by cancer cells contain GalNAc. In addition, H-type lectins were utilized in diagnostics of other non-cancer diseases and represent great potential as components of drug delivery systems. Here, we present an overview of the H-type lectins and their applications in diagnostics, analytics and drug delivery.
Collapse
Affiliation(s)
- Agnieszka J Pietrzyk-Brzezinska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, Lodz 90-924, Poland.
| | - Anna Bujacz
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, Lodz 90-924, Poland
| |
Collapse
|
8
|
Kutzner TJ, Gabba A, FitzGerald FG, Shilova NV, García Caballero G, Ludwig AK, Manning JC, Knospe C, Kaltner H, Sinowatz F, Murphy PV, Cudic M, Bovin NV, Gabius HJ. How altering the modular architecture affects aspects of lectin activity: case study on human galectin-1. Glycobiology 2019; 29:593-607. [PMID: 31091305 PMCID: PMC6639544 DOI: 10.1093/glycob/cwz034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/26/2019] [Accepted: 05/11/2019] [Indexed: 12/13/2022] Open
Abstract
Discoveries on involvement of glycan-protein recognition in many (patho)physiological processes are directing attention to exploring the significance of a fundamental structural aspect of sugar receptors beyond glycan specificity, i.e., occurrence of distinct types of modular architecture. In order to trace clues for defining design-functionality relationships in human lectins, a lectin's structural unit has been used as source material for engineering custom-made variants of the wild-type protein. Their availability facilitates comparative analysis toward the stated aim. With adhesion/growth-regulatory human galectin-1 as example, the strategy of evaluating how changes of its design (here, from the homodimer of non-covalently associated domains to (i) linker-connected di- and tetramers and (ii) a galectin-3-like protein) affect activity is illustrated by using three assay systems of increasing degree of glycan complexity. Whereas calorimetry with two cognate disaccharides and array testing with 647 (glyco)compounds disclosed no major changes, galectin histochemical staining profiles of tissue sections that present natural glycome complexity revealed differences between wild-type and linker-connected homo-oligomers as well as between the galectin-3-like variant and wild-type galectin-3 for cell-type positivity, level of intensity at the same site and susceptibility for inhibition by a bivalent glycocompound. These results underscore the strength of the documented approach. Moreover, they give direction to proceed to (i) extending its application to other members of this lectin family, especially galectin-3 and (ii) then analyzing impact of architectural alterations on cell surface lattice formation and ensuing biosignaling systematically, considering the variants' potential for translational medicine.
Collapse
Affiliation(s)
- Tanja J Kutzner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Adele Gabba
- School of Chemistry, National University of Ireland, Galway, Ireland
| | - Forrest G FitzGerald
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton FL, USA
| | - Nadezhda V Shilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Laboratory of Carbohydrates, Russian Academy of Sciences, Moscow, Russia
| | - Gabriel García Caballero
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Anna-Kristin Ludwig
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Joachim C Manning
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Clemens Knospe
- Institute of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Fred Sinowatz
- Institute of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Paul V Murphy
- School of Chemistry, National University of Ireland, Galway, Ireland
| | - Mare Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton FL, USA
| | - Nicolai V Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Laboratory of Carbohydrates, Russian Academy of Sciences, Moscow, Russia
- Centre for Kode Technology Innovation, School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
9
|
Chicken GRIFIN: binding partners, developmental course of localization and activation of its lens-specific gene expression by L-Maf/Pax6. Cell Tissue Res 2018; 375:665-683. [PMID: 30328540 DOI: 10.1007/s00441-018-2931-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/18/2018] [Indexed: 01/11/2023]
Abstract
Tissue lectins appear to be involved in a broad range of physiological processes, as reflected for the members of the family of galectins by referring to them as adhesion/growth-regulatory effectors. In order to clarify the significance of galectin presence, key challenges are to define their binding partners and the profile of localization. Having identified the chicken galectin-related interfiber protein (C-GRIFIN) as lens-specific protein present in the main body of adult lens, we here report its interaction with lens proteins in ligand blotting. The assumption for pairing with α-, β- and δ-crystallins was ascertained by mass spectrometric detection of their presence in eluted fractions obtained by affinity chromatography. Biochemical and immunohistochemical monitoring revealed protein presence from about 3-day-old embryos onwards, mostly in the cytoplasm of elongated posterior cells, later in secondary lens fiber cells. On the level of gene expression, its promoter was activated by transcription factor L-Maf alone and together with Pax6 like a crystallin gene, substantiating C-GRIFIN's status as lens-specific galectin. Using this combined strategy for counterreceptor and expression profiling by bio- and histochemical methods including light, electron and fluorescence microscopy, respective monitoring in lens development can now be taken to the level of the complete galectin family.
Collapse
|