1
|
Wang X, Fu X, Luo D, Hou R, Li P, Chen Y, Zhang X, Meng X, Yue Y, Liu J. 3D printed high-precision porous scaffolds prepared by fused deposition modeling induce macrophage polarization to promote bone regeneration. Biomed Mater 2024; 19:035006. [PMID: 38422525 DOI: 10.1088/1748-605x/ad2ed0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
Macrophage-mediated bone immune responses significantly influence the repair of bone defects when utilizing tissue-engineered scaffolds. Notably, the scaffolds' physical structure critically impacts macrophage polarization. The optimal pore size for facilitating bone repair remains a topic of debate due to the imprecision of traditional methods in controlling scaffold pore dimensions and spatial architecture. In this investigation, we utilized fused deposition modeling (FDM) technology to fabricate high-precision porous polycaprolactone (PCL) scaffolds, aiming to elucidate the impact of pore size on macrophage polarization. We assessed the scaffolds' mechanical attributes and biocompatibility. Real-time quantitative reverse transcription polymerase chain reaction was used to detect the expression levels of macrophage-related genes, and enzyme linked immunosorbent assay for cytokine secretion levels.In vitroosteogenic capacity was determined through alkaline phosphatase and alizarin red staining. Our findings indicated that macroporous scaffolds enhanced macrophage adhesion and drove their differentiation towards the M2 phenotype. This led to the increased production of anti-inflammatory factors and a reduction in pro-inflammatory agents, highlighting the scaffolds' immunomodulatory capabilities. Moreover, conditioned media from macrophages cultured on these macroporous scaffolds bolstered the osteogenic differentiation of bone marrow mesenchymal stem cells, exhibiting superior osteogenic differentiation potential. Consequently, FDM-fabricated PCL scaffolds, with precision-controlled pore sizes, present promising prospects as superior materials for bone tissue engineering, leveraging the regulation of macrophage polarization.
Collapse
Affiliation(s)
- Xiangyu Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| | - Xinyu Fu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| | - Dongmei Luo
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| | - Ruxia Hou
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| | - Peiwen Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| | - Yurou Chen
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| | - Xinyao Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| | - Xiangjie Meng
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| | - Yingge Yue
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| | - Junyu Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| |
Collapse
|
2
|
Gao Q, Liu J, Wang M, Liu X, Jiang Y, Su J. Biomaterials regulates BMSCs differentiation via mechanical microenvironment. BIOMATERIALS ADVANCES 2024; 157:213738. [PMID: 38154401 DOI: 10.1016/j.bioadv.2023.213738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023]
Abstract
Bone mesenchymal stem cells (BMSCs) are crucial for bone tissue regeneration, the mechanical microenvironment of hard tissues, including bone and teeth, significantly affects the osteogenic differentiation of BMSCs. Biomaterials may mimic the microenvironment of the extracellular matrix and provide mechanical signals to regulate BMSCs differentiation via inducing the secretion of various intracellular factors. Biomaterials direct the differentiation of BMSCs via mechanical signals, including tension, compression, shear, hydrostatic pressure, stiffness, elasticity, and viscoelasticity, which can be transmitted to cells through mechanical signalling pathways. Besides, biomaterials with piezoelectric effects regulate BMSCs differentiation via indirect mechanical signals, such as, electronic signals, which are transformed from mechanical stimuli by piezoelectric biomaterials. Mechanical stimulation facilitates achieving vectored stem cell fate regulation, while understanding the underlying mechanisms remains challenging. Herein, this review summarizes the intracellular factors, including translation factors, epigenetic modifications, and miRNA level, as well as the extracellular factor, including direct and indirect mechanical signals, which regulate the osteogenic differentiation of BMSCs. Besides, this review will also give a comprehensive summary about how mechanical stimuli regulate cellular behaviours, as well as how biomaterials promote the osteogenic differentiation of BMSCs via mechanical microenvironments. The cellular behaviours and activated signal pathways will give more implications for the design of biomaterials with superior properties for bone tissue engineering. Moreover, it will also provide inspiration for the construction of bone organoids which is a useful tool for mimicking in vivo bone tissue microenvironments.
Collapse
Affiliation(s)
- Qianmin Gao
- Institute of Translational Medicine, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; Organoid Research Centre, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; National Centre for Translational Medicine (Shanghai) SHU Branch, NO.333 Nanchen Road, Shanghai University, Shanghai 200444, PR China
| | - Jinlong Liu
- Institute of Translational Medicine, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; Organoid Research Centre, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; National Centre for Translational Medicine (Shanghai) SHU Branch, NO.333 Nanchen Road, Shanghai University, Shanghai 200444, PR China
| | - Mingkai Wang
- Institute of Translational Medicine, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; Organoid Research Centre, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; National Centre for Translational Medicine (Shanghai) SHU Branch, NO.333 Nanchen Road, Shanghai University, Shanghai 200444, PR China
| | - Xiangfei Liu
- Department of Orthopedics, Shanghai Zhongye Hospital, NO. 456 Chunlei Road, Shanghai 200941, PR China.
| | - Yingying Jiang
- Institute of Translational Medicine, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; Organoid Research Centre, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; National Centre for Translational Medicine (Shanghai) SHU Branch, NO.333 Nanchen Road, Shanghai University, Shanghai 200444, PR China; Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, NO.1665 Kongjiang Road, Shanghai 200092, PR China.
| |
Collapse
|
3
|
Gharibshahian M, Alizadeh M, Kamalabadi Farahani M, Salehi M. Fabrication of Rosuvastatin-Incorporated Polycaprolactone -Gelatin Scaffold for Bone Repair: A Preliminary In Vitro Study. CELL JOURNAL 2024; 26:70-80. [PMID: 38351731 PMCID: PMC10864776 DOI: 10.22074/cellj.2023.2009047.1391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 02/18/2024]
Abstract
OBJECTIVE Rosuvastatin (RSV) is a hydrophilic, effective statin with a long half-life that stimulates bone regeneration. The present study aims to develop a new scaffold and controlled release system for RSV with favourable properties for bone tissue engineering (BTE). MATERIALS AND METHODS In this experimental study, high porous polycaprolactone (PCL)-gelatin scaffolds that contained different concentrations of RSV (0 mg/10 ml, 0.1 mg/10 ml, 0.5 mg/10 ml, 2.5 mg/10 ml, 12.5 mg/10 ml, and 62.5 mg/10 ml) were fabricated by the thermally-induced phase separation (TIPS) method. Mechanical and biological properties of the scaffolds were evaluated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), compressive strength, porosity, MTT, alkaline phosphatase (ALP) activity, water contact angle, degradation rate, pH alteration, blood clotting index (BCI), and hemocompatibility. RESULTS SEM analysis confirmed that the porous structure of the scaffolds contained interconnected pores. FTIR results showed that the RSV structure was maintained during the scaffold's fabrication. RSV (up to 62.5 mg/10 ml) increased compressive strength (16.342 ± 1.79 MPa), wettability (70.2), and degradation rate of the scaffolds. Scaffolds that contained 2.5 mg/10 ml RSV had the best effect on the human umbilical cord mesenchymal stem cell (HUC-MSCs) survival, hemocompatibility, and BCI. As a sustained release system, only 31.68 ± 0.1% of RSV was released from the PCL-Gelatin-2.5 mg/10 ml RSV scaffold over 30 days. In addition, the results of ALP activity showed that RSV increased the osteogenic differentiation potential of the scaffolds. CONCLUSION PCL-Gelatin-2.5 mg/10 ml RSV scaffolds have favorable mechanical, physical, and osteogenic properties for bone tissue and provide a favorable release system for RSV. They can mentioned as a a promising strategy for bone regeneration that should be further assessed in animals and clinical studies.
Collapse
Affiliation(s)
- Maliheh Gharibshahian
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
- Tissue Engineering and Stem Cells Research Centre, Shahroud University of Medical Sciences, Shahroud, Iran
- Sexual Health and Fertility Research Centre, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
4
|
Farasati Far B, Naimi-Jamal MR, Jahanbakhshi M, Rostamani H, Karimi M, Keihankhadiv S. Synthesis and characterization of chitosan/collagen/polycaprolactone hydrogel films with enhanced biocompatibility and hydrophilicity for artificial tendon applications. Int J Biol Macromol 2023; 253:127448. [PMID: 37844811 DOI: 10.1016/j.ijbiomac.2023.127448] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Regenerative medicine confronts various obstacles, such as creating and advancing biomaterials. Besides being safe, such materials should promote cellular activity. Polycaprolactone (PCL) has numerous medical applications as an engineering material. However, these polymers lack hydrophilicity. Herein, chitosan (CS)/collagen (COL)/polycaprolactone hydrogel films (CSCPs) were synthesized with different weight ratios of PCL; specifically, CS/COL (CSC): PCL content of 1:3, 1:6, and 1:9. For this purpose, novel COL immobilization on CS was performed via covalent attachment. Following the addition of PCL to CSC hydrogel, the resulting CSCP hydrogel films were characterized using tensile measurements, TGA, XRD, FTIR, and FE-SEM. A greater PCL content increases the elongation at break from 134.8 to 369.5 % and the tensile strength of the hydrogel films from 4.8 to 18.4 MPa. The hydrophobicity of prepared specimens was assessed through water absorption and contact-angle tests. For CSCP3 to CSCP9, the water contact angle increased from 61.03° to 70.82°. After 48 days, CSCP6 and CSCP9 hydrogel films demonstrated a slow rate of degradation, losing <15 % of their weight. Moreover, all three types of hydrogel films exhibited high biocompatibility (higher than 95 % after three days), as confirmed by the MTT assay. The hemolysis rates of CSCP hydrogel films were <2 %, which could be deemed safe for contact with a blood environment. The presence of no costly and bio-based crosslinking agents and desired characteristics for tissue engineering applications suggest that CSCP hydrogel films may be promising candidates for use in artificial tendons.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran.
| | - Mehdi Jahanbakhshi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hosein Rostamani
- Department of Biomedical Engineering-Biomaterials, Faculty of Engineering, Islamic Azad University, Mashhad, Iran
| | - Mahsa Karimi
- Mechanical Engineering and Mechanics, Drexel University, Philadelphia, USA
| | - Shadi Keihankhadiv
- Department of physical chemistry and Technology of polymers, Faculty of Chemistry, Silesian University of Technology, 44_100 Gliwice, Poland
| |
Collapse
|
5
|
Xu J, Wang L, Sun H. Adsorption of neutral organic compounds on polar and nonpolar microplastics: Prediction and insight into mechanisms based on pp-LFERs. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124857. [PMID: 33418523 DOI: 10.1016/j.jhazmat.2020.124857] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Adsorption of 18 neutral organic compounds (OCs) on polar (polybutylene succinate (PBS) and polycaprolactone (PCL)) and nonpolar (low-density polyethylene (LDPE) and polystyrene (PS)) microplastics (MPs) were investigated. The adsorption coefficients (Kd) varied with ranges of 130-42,002, 124-27,768, 6.40-10,713, and 1.52-10,332 L kg-1 for adsorption on PCL, PBS, LDPE, and PS MPs, respectively. The polar MPs showed greater adsorption capacities than nonpolar MPs. Non-specific interaction, i.e. hydrophobic partition played a crucial role in the adsorption of OCs on all MPs, while polar interactions also contributed significantly to the greater adsorption on polar MPs. Poly-parameter linear free energy relationships (pp-LFERs) with multiple linear regression (MLR) and feedforward network (FN) were then employed to model the adsorption of OCs on MPs so as to obtain deep insights into adsorption mechanisms. The MLR models achieved Radj2 of 0.90-0.97 and root mean square error (RMSE) of 0.13-0.38 log units, while the FN models achieved Radj2 of 0.85-0.90 and RMSE of 0.21-0.60 log units. The MLR models are more accurate under selected equilibrium concentrations while FN models are capable of making predictions under varying equilibrium concentrations. Lastly, both MLR and FN models showed good prediction on literature adsorption data on nonpolar MPs.
Collapse
Affiliation(s)
- Jiaping Xu
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Lei Wang
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Hongwen Sun
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
6
|
Qi T, Weng J, Yu F, Zhang W, Li G, Qin H, Tan Z, Zeng H. Insights into the Role of Magnesium Ions in Affecting Osteogenic Differentiation of Mesenchymal Stem Cells. Biol Trace Elem Res 2021; 199:559-567. [PMID: 32449009 DOI: 10.1007/s12011-020-02183-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022]
Abstract
Bone marrow mesenchymal stem cells (MSCs) are multipotent stem cells with the ability to differentiate into bone-producing cells, which is essential for bone formation. Magnesium biomedical materials, such as biodegradable matters with osteoinductive properties, play a vital role in the osteogenic differentiation of MSCs. International and Chinese studies have shown that magnesium ions, which are produced by biodegradation, mainly achieve this effect by regulating the expression of genes and proteins associated with osteogenesis, activating multiple signal pathways, elevating autophagic activities, and adjusting the pH in the microenvironment. It is of great significance to study the regulatory mechanisms and identify the optimal conditions that how magnesium ions promote osteogenic differentiation of MSCs. In this study, we summarized the regulatory mechanisms noted above.
Collapse
Affiliation(s)
- Tiantian Qi
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
| | - Jian Weng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
| | - Fei Yu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
| | - Weifei Zhang
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
| | - Guoqing Li
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
| | - Haotian Qin
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
| | - Zhen Tan
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
| | - Hui Zeng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China.
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China.
| |
Collapse
|
7
|
Zhao L, Rong L, Xu J, Lian J, Wang L, Sun H. Sorption of five organic compounds by polar and nonpolar microplastics. CHEMOSPHERE 2020; 257:127206. [PMID: 32502737 DOI: 10.1016/j.chemosphere.2020.127206] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/25/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Microplastics (MPs) could act as a vector for various kinds of pollutants due to their small size. Compared to nonpolar and nondegradabale MPs, the sorption of organic pollutants on polar and degradable MPs has been seldom studied. In this study, the sorption behavior of two nonpolar polycyclic aromatic hydrocarbons (PAHs, phenanthrene and pyrene), two polar derivates of PAHs (1-nitronapthalene and 1-napthylamine) and a heterocyclic chemical (atrazine) by three polar MPs including polybutylene succinate (PBS), polycaprolactone (PCL) and polyurethane (PU) and a typical nonpolar MP, polystyrene (PS) were investigated. The sorption followed the pseudo-second-order kinetics and sorption equilibrium was achieved within 5 days. Sorption isotherms could be well fitted by both Linear (R2>0.946) and Freundich models (R2>0.945) and the values of nonlinear index (n) from Freundlich model in most cases were close to 1, suggesting that hydrophobic partition was a primary process controlling the sorption. The sorption coefficients (Kd) of the five organic compounds ranged from 29. 6 to 1.42 × 105 (L/kg). The log KOC/log KOW of PAHs and derivates of PAHs on polar MPs were greater than 1, especially for 1-naphthylamine (1.30-1.40), confirming the great contribution of hydrogen bonding. PU contains a benzene ring and showed greater sorption compared the other two polar MPs, indicating the existence of π (n) -π electron donor-acceptor interactions. Morevoer, the sorption of phenanthrene and pyrene on PU were better fitted by Langmuir model and the maximum adsorption capacities were 1.06 × 104 and 5.87 × 103 mg/kg, respectively.
Collapse
Affiliation(s)
- Longfei Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Lili Rong
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jiaping Xu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jiapan Lian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
8
|
Quattrosoldi S, Soccio M, Gazzano M, Lotti N, Munari A. Fully biobased, elastomeric and compostable random copolyesters of poly(butylene succinate) containing Pripol 1009 moieties: Structure-property relationship. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109189] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Lan W, Xu M, Zhang X, Zhao L, Huang D, Wei X, Chen W. Biomimetic polyvinyl alcohol/type II collagen hydrogels for cartilage tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1179-1198. [PMID: 32207369 DOI: 10.1080/09205063.2020.1747184] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Type II collagen (Col-II) is one of the important organic components of the cartilage extracellular matrix (ECM). Such natural material is known for its good biocompatibility, but it could not provide a good supporting environment for seed cells due to its rapid degradation and poor strength. In the present work, different contents of Col-II were incorporated into porous polyvinyl alcohol (PVA) to fabricate porous PVA/Col-II composite hydrogels for cartilage tissue engineering. The results illustrate that, after incorporation of Col-II, the elasticity modulus of the composite hydrogels firstly increases, and then decreases (under moisture state). The elasticity modulus of PVA/Col-II (at the ratio of 1:1) hydrogels reaches 11 ± 1.7 KPa, about two-fold higher than pure PVA hydrogels (4.9 ± 0.6 KPa). Meanwhile, all hydrogels exhibit relatively high water content (> 95%) and porosity (> 75%). The degradation analysis indicates that Col-II incorporation induce a high degradation ratio of the composite hydrogels. Cell culture results show PVA/Col-II hydrogels have no negative effects on cells viability and proliferation. The PVA/Col-II hydrogels may possess a potential application in the field of articular cartilage tissue engineering and regeneration.
Collapse
Affiliation(s)
- Weiwei Lan
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China.,Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Mengjie Xu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Xiumei Zhang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Liqin Zhao
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China.,Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Xiaochun Wei
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Weiyi Chen
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China.,Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| |
Collapse
|
10
|
Lule ZC, Wondu Shiferaw E, Kim J. Thermomechanical Properties of SiC-Filled Polybutylene Succinate Composite Fabricated via Melt Extrusion. Polymers (Basel) 2020; 12:E418. [PMID: 32054110 PMCID: PMC7077630 DOI: 10.3390/polym12020418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 11/17/2022] Open
Abstract
Polybutylene succinate (PBS) composites filled with various mass fractions of silicon carbide (SiC) particles were fabricated via slow melt extrusion. The morphological analysis revealed that the fabrication technique assisted in achieving a good adhesion between the PBS and SiC, along with excellent filler dispersion throughout the PBS matrix. The inclusion of 40 wt.% SiC in the PBS composite afforded a 10 °C increase in the thermal degradation temperature and a 160% enhancement in the thermal conductivity relative to the neat PBS. The crystallization temperature also increased with the inclusion of SiC particles, thus making the composites easier to process. Furthermore, the improvement in the Young's modulus of the PBS composites increased their rigidity and stiffness relative to the neat PBS.
Collapse
Affiliation(s)
| | | | - Jooheon Kim
- School of Chemical Engineering & Materials Science, Chung-Ang University, Seoul 156-756, Korea; (Z.C.L.); (E.W.S.)
| |
Collapse
|