1
|
Maharani DK, Kusumawati Y, Safitri WN, Nugraha RE, Holilah H, Sholeha NA, Jalil AA, Bahruji H, Prasetyoko D. Optimization of hierarchical ZSM-5 structure from kaolin as catalysts for biofuel production. RSC Adv 2023; 13:14236-14248. [PMID: 37180015 PMCID: PMC10170628 DOI: 10.1039/d3ra01810e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Optimization of hierarchical ZSM-5 structure by variation of the first hydrothermal step at different times provides insight into the evolution of micro/mesopores and its effect as a catalyst for deoxygenation reaction. The degree of tetrapropylammonium hydroxide (TPAOH) incorporation as an MFI structure directing agent and N-cetyl-N,N,N-trimethylammonium bromide (CTAB) as a mesoporogen was monitored to understand the effect towards pore formation. Amorphous aluminosilicate without the framework-bound TPAOH achieved within 1.5 h of hydrothermal treatment provides flexibility to incorporate CTAB for forming well-defined mesoporous structures. Further incorporation of TPAOH within the restrained ZSM-5 framework reduces the flexibility of aluminosilicate gel to interact with CTAB to form mesopores. The optimized hierarchical ZSM-5 was obtained by allowing hydrothermal condensation at 3 h, in which the synergy between the readily formed ZSM-5 crystallites and the amorphous aluminosilicate generates the proximity between micropores and mesopores. A high acidity and micro/mesoporous synergy obtained after 3 h exhibit 71.6% diesel hydrocarbon selectivity because of the improved diffusion of reactant within the hierarchical structures.
Collapse
Affiliation(s)
- Dina Kartika Maharani
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember Keputih Sukolilo 60111 Surabaya Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Negeri Surabaya Ketintang Surabaya East Java 60211 Indonesia
| | - Yuly Kusumawati
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember Keputih Sukolilo 60111 Surabaya Indonesia
| | - Widiya Nur Safitri
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember Keputih Sukolilo 60111 Surabaya Indonesia
| | - Reva Edra Nugraha
- Department of Chemical Engineering, Faculty of Engineering, Universitas Pembangunan Nasional "Veteran" Jawa Timur Surabaya East Java 60294 Indonesia
| | - Holilah Holilah
- Department of Food Science and Technology, Faculty of Agriculture, Halu Oleo University Indonesia
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency of Indonesia (BRIN) Cibinong 16911 Indonesia
| | - Novia Amalia Sholeha
- College of Vocational Studies, Bogor Agricultural University (IPB University) Jalan Kumbang No. 14 Bogor 16151 Indonesia
| | - Aishah Abdul Jalil
- Centre of Hydrogen Energy, Institute of Future Energy 81310 UTM Johor Bahru Johor Malaysia
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia 81310 UTM Skudai Johor Bahru Johor Malaysia
| | - Hasliza Bahruji
- Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam Bandar Seri Begawan BE 1410 Brunei
| | - Didik Prasetyoko
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember Keputih Sukolilo 60111 Surabaya Indonesia
| |
Collapse
|
2
|
Zabihpour A, Ahmadpour J, Yaripour F. Strategies to control reversible and irreversible deactivation of ZSM-5 zeolite during the conversion of methanol to propylene (MTP): a review. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
3
|
Grzeszczak J, Wróblewska A, Bosacka M, Koren ZC, Michalkiewicz B. Studies on the catalytic activities of ZSM-5 zeolites with different aluminum contents in the green oxidation of α-pinene to high value-added products. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
4
|
Fu T, Cao C, Zhang L, Zhang L, Ma Q, Xu Z, Wang R, Li H, Li Z. Synergistic Catalysis of Brønsted Acid, Al-Lewis Acid, and Zn-Lewis Acid on Steam-Treated Zn/ZSM-5 for Highly Stable Conversion of Methanol to Aromatics. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Tingjun Fu
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Chuntao Cao
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Liangliang Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Li Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, Shanxi, China
| | - Qian Ma
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Zhenjun Xu
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Ran Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Han Li
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Zhong Li
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| |
Collapse
|
5
|
Gautam R, Pal P, Saravanamurugan S. Enhanced Catalytic Activity of Modified ZSM-5 Towards Glucose Isomerization to Fructose. Chempluschem 2023; 88:e202200299. [PMID: 36646519 DOI: 10.1002/cplu.202200299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/22/2022] [Indexed: 12/24/2022]
Abstract
The present study focuses on generating mesopores within H-ZSM-5 (H-Z) zeolite via desilication and dealumination to incorporate Lewis acidic metal, such as Sn, into the framework (Sn4 ZS180 A15 ) to catalyse glucose isomerisation. Sn4 ZS180 A15 possesses enhanced surface area (457 m2 g-1 ), mesopore volume (0.585 cm3 g-1 ) and a high weak-medium to strong acidic sites ratio, compared to parent H-Z (395 m2 g-1 ; 0.174 cm3 g-1 ). DRS-UV-Vis and XPS results corroborate Sn incorporation into the framework of Sn4 ZS180 A15 , based on the absorbance peak around 200-220 nm and peaks appearing at 495.8 and 487.4 eV, respectively. Sn4 ZS180 A15 exhibits higher catalytic activity towards glucose isomerisation in ethanol-water at 110 °C, yielding 44.2 % fructose with 80.0 % selectivity. Conversely, the parent H-Z afforded negligible glucose conversion with a fructose yield of <1 % under identical conditions. Moreover, Sn-incorporated on dealuminated (Sn4 ZS0 A15 ) and desilicated (Sn4 ZS180 A0 ) catalysts give a low yield of fructose (7-10 %), signifying the requirement of the desilication-dealumination process before incorporating Sn into the framework.
Collapse
Affiliation(s)
- Rahul Gautam
- Laboratory of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, 140 306, Punjab, India
| | - Priyanka Pal
- Laboratory of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, 140 306, Punjab, India
| | - Shunmugavel Saravanamurugan
- Laboratory of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, 140 306, Punjab, India
| |
Collapse
|
6
|
Kerstens D, Smeyers B, Van Waeyenberg J, Zhang Q, Yu J, Sels BF. State of the Art and Perspectives of Hierarchical Zeolites: Practical Overview of Synthesis Methods and Use in Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004690. [PMID: 32969083 DOI: 10.1002/adma.202004690] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Microporous zeolites have proven to be of great importance in many chemical processes. Yet, they often suffer from diffusion limitations causing inefficient use of the available catalytically active sites. To address this problem, hierarchical zeolites have been developed, which extensively improve the catalytic performance. There is a multitude of recent literature describing synthesis of and catalysis with these hierarchical zeolites. This review attempts to organize and overview this literature (of the last 5 years), with emphasis on the most important advances with regard to synthesis and application of such zeolites. Special attention is paid to the most common and important 10- and 12-membered ring zeolites (MTT, TON, FER, MFI, MOR, FAU, and *BEA). In contrast to previous reviews, the research per zeolite topology is brought together and discussed here. This allows the reader to instantly find the best synthesis method in accordance to the desired zeolite properties. A summarizing graph is made available to enable the reader to select suitable synthesis procedures based on zeolite acidity and mesoporosity, the two most important tunable properties.
Collapse
Affiliation(s)
- Dorien Kerstens
- Centre for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan, 200f, 3001, Leuven, Belgium
| | - Brent Smeyers
- Centre for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan, 200f, 3001, Leuven, Belgium
| | - Jonathan Van Waeyenberg
- Centre for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan, 200f, 3001, Leuven, Belgium
| | - Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preperative Chemistry College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preperative Chemistry College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Bert F Sels
- Centre for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan, 200f, 3001, Leuven, Belgium
| |
Collapse
|
7
|
Beheshti MS, Ahmadpour J, Behzad M, Arabi H. Preparation of hierarchical H-[B]-ZSM-5 zeolites by a desilication method as a highly selective catalyst for conversion of methanol to propylene. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2020. [DOI: 10.1007/s43153-020-00075-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|